Abstract
An Eulerian–Eulerian multifluid model coupled with interfacial area transport equation (IATE) and volume of fluid (VOF) method is implemented to investigate the polydispersed bubbly flow and slag entrapment phenomena in a slab continuous casting mold. The multifluid model is employed to describe the molten steel, liquid slag, and argon gas three phases. The IATE is solved to compute the bubble coalescence and breakage, and the VOF method is used as a surface capturing technique to study interfacial behaviors among the phases at the onset of slag entrainment. The turbulence in the bulk region is modeled by WALE model with an extra source term for the interaction between the bubbles and the steel. The multifluid-IATE-VOF model is validated by previous experimental measurements, which can accurately predict the local bubble size distribution and slag entrapment in the continuous casting process. According to the comparison of the effect of monodisperse and polydisperse bubbles on the steel flow pattern and slag entrapment, it was found that small bubbles can coalesce into large bubbles in the dense bubble region. Bubble breakage often occurs in the jet stream region and in areas with few bubbles. Meanwhile, larger bubbles enhance the upward flow and significantly affect the liquid slag layer, which cause the formation of slag droplets near the SEN. Furthermore, as the gas flow rate increases, the influence of bubble coalescence becomes more pronounced, therefore, it is advisable to take bubble polydispersity into account for predicting the bubbly flow and slag entrapment during the CC process, especially in the case of high gas flow rates.
Similar content being viewed by others
References
L.F. Zhang, S.B. Yang, K.K. Cai, J.Y. Li, X.G. Wan, and B.G. Thomas: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 63–83.
S.G. Zheng and M. Zhu: Ironmak. Steelmak., 2014, vol. 41, pp. 507–13.
M. Iguchi, J. Yoshida, T. Shimizu, and Y. Mizuno: ISIJ Int., 2000, vol. 40, pp. 685–91.
N. Kasai and M. Iguchi: ISIJ Int., 2007, vol. 47, pp. 982–7.
L. Ren, L.F. Zhang, and Q.Q. Wang: Metall. Res. Technol., 2018, vol. 115, pp. 102–15.
Y.B. Yin, J.M. Zhang, B. Wang, and Q.P. Dong: Ironmak. Steelmak., 2019, vol. 46, pp. 682–91.
Z.Q. Liu, Z.B. Sun, and B.K. Li: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1248–67.
X.L. Li, B.K. Li, Z.Q. Liu, R. Niu, Y.Q. Liu, C.L. Zhao, C. Huang, H. Qiao, and T.X. Yuan: Metals, 2019, vol. 9(1), pp. 7–20.
A. Asad, C. Kratzsch, and R. Schwarze: Steel Res. Int., 2016, vol. 87, pp. 181–90.
S. Yamashita and M. Iguchi: ISIJ Int., 2001, vol. 41, pp. 1529–31.
Y.B. Yin and J.M. Zhang: ISIJ Int., 2020, vol. 61, pp. 853–64.
T. Zhang, Z.G. Luo, C.L. Liu, H. Zhou, and Z.S. Zhou: Powder Technol., 2015, vol. 273, pp. 154–64.
W.D. Yang, Z.L. Luo, Y.J. Gu, Z.Y. Liu, and Z.S. Zou: Powder Technol., 2020, vol. 361, pp. 769–81.
T. Hibiki and M. Ishii: J. Heat Mass Transf., 2000, vol. 43, pp. 2711–26.
M. Ishii and S. Kim: Nucl. Sci. Eng., 2004, vol. 146, pp. 257–73.
F. Lehr and D. Mewes: Chem. Eng. Sci., 2001, vol. 56, pp. 1159–66.
Q. Wu, S. Kim, M. Ishii, and S. Beus: J. Heat Mass Transf., 1998, vol. 41, pp. 1103–12.
Z.Q. Liu, B.K. Li, F.S. Qi, and S.C.P. Chueng: Powder Technol., 2018, vol. 319, pp. 139–47.
F. Nicoud and F. Ducros: Flow Turbul. Combust., 1999, vol. 62(3), pp. 183–200.
Y. Sato, M. Sadatomi, K. Sekoguchi, and J. Multiph: Flow, 1975, vol. 2, pp. 79–87.
T. Ma, T. Ziegenhein, D. Lucas, E. Krepper, and J. Fröhlich: Int. J. Heat Fluid Flow, 2015, vol. 56, pp. 51–9.
M. Ishii and N. Zuber: AICHE J., 1979, vol. 5, pp. 843–55.
A. Tomiyama, G. Celata, S. Hosokawa, and S. Yoshida: Int. J. Multiph. Flow, 2002, vol. 28, pp. 1497–519.
J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comput. Phys., 1992, vol. 100(2), pp. 335–54.
C.D. Huang, H.C. Zhou, L.F. Zhang, W. Yang, J. Zhang, R. Ying, and W. Chen: Steel Res. Int., 2021, vol. 93, p. 2100350.
L. Štrubelj and I. Tiselj: Int. J. Numer. Methods Eng., 2011, vol. 85, pp. 575–90.
R. Meller, F. Schlegel, and D. Lucas: Int. J. Numer. Methods Fluid, 2021, vol. 93, pp. 748–73.
S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, and L. Tobiska: Int. J. Numer. Methods Fluids, 2009, vol. 60, pp. 1259–88.
Z.Q. Liu, B. Li, A. Vakhrushev, M.H. Wu, and A. Ludwig: Steel Res. Int., 2019, vol. 90, p. 1800117.
S. Sarkar, V. Singh, S.K. Ajmani, R.K. Singh, and E.Z. Chacko: ISIJ Int., 2018, vol. 58, pp. 68–77.
Acknowledgments
The authors gratefully acknowledge financial support by the National Natural Science Foundation of China (U1960202).
Conflicts of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, L., Yang, J. & Liu, Y. Numerical Investigation for Effects of Polydisperse Argon Bubbles on Molten Steel Flow and Liquid Slag Entrapment in a Slab Continuous Casting Mold. Metall Mater Trans B 53, 3707–3721 (2022). https://doi.org/10.1007/s11663-022-02634-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11663-022-02634-y