Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Numerical Investigation for Effects of Polydisperse Argon Bubbles on Molten Steel Flow and Liquid Slag Entrapment in a Slab Continuous Casting Mold

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An Eulerian–Eulerian multifluid model coupled with interfacial area transport equation (IATE) and volume of fluid (VOF) method is implemented to investigate the polydispersed bubbly flow and slag entrapment phenomena in a slab continuous casting mold. The multifluid model is employed to describe the molten steel, liquid slag, and argon gas three phases. The IATE is solved to compute the bubble coalescence and breakage, and the VOF method is used as a surface capturing technique to study interfacial behaviors among the phases at the onset of slag entrainment. The turbulence in the bulk region is modeled by WALE model with an extra source term for the interaction between the bubbles and the steel. The multifluid-IATE-VOF model is validated by previous experimental measurements, which can accurately predict the local bubble size distribution and slag entrapment in the continuous casting process. According to the comparison of the effect of monodisperse and polydisperse bubbles on the steel flow pattern and slag entrapment, it was found that small bubbles can coalesce into large bubbles in the dense bubble region. Bubble breakage often occurs in the jet stream region and in areas with few bubbles. Meanwhile, larger bubbles enhance the upward flow and significantly affect the liquid slag layer, which cause the formation of slag droplets near the SEN. Furthermore, as the gas flow rate increases, the influence of bubble coalescence becomes more pronounced, therefore, it is advisable to take bubble polydispersity into account for predicting the bubbly flow and slag entrapment during the CC process, especially in the case of high gas flow rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. L.F. Zhang, S.B. Yang, K.K. Cai, J.Y. Li, X.G. Wan, and B.G. Thomas: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 63–83.

    Article  CAS  Google Scholar 

  2. S.G. Zheng and M. Zhu: Ironmak. Steelmak., 2014, vol. 41, pp. 507–13.

    Article  CAS  Google Scholar 

  3. M. Iguchi, J. Yoshida, T. Shimizu, and Y. Mizuno: ISIJ Int., 2000, vol. 40, pp. 685–91.

    Article  CAS  Google Scholar 

  4. N. Kasai and M. Iguchi: ISIJ Int., 2007, vol. 47, pp. 982–7.

    Article  CAS  Google Scholar 

  5. L. Ren, L.F. Zhang, and Q.Q. Wang: Metall. Res. Technol., 2018, vol. 115, pp. 102–15.

    Article  Google Scholar 

  6. Y.B. Yin, J.M. Zhang, B. Wang, and Q.P. Dong: Ironmak. Steelmak., 2019, vol. 46, pp. 682–91.

    Article  CAS  Google Scholar 

  7. Z.Q. Liu, Z.B. Sun, and B.K. Li: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1248–67.

    Article  Google Scholar 

  8. X.L. Li, B.K. Li, Z.Q. Liu, R. Niu, Y.Q. Liu, C.L. Zhao, C. Huang, H. Qiao, and T.X. Yuan: Metals, 2019, vol. 9(1), pp. 7–20.

    Article  CAS  Google Scholar 

  9. A. Asad, C. Kratzsch, and R. Schwarze: Steel Res. Int., 2016, vol. 87, pp. 181–90.

    Article  CAS  Google Scholar 

  10. S. Yamashita and M. Iguchi: ISIJ Int., 2001, vol. 41, pp. 1529–31.

    Article  CAS  Google Scholar 

  11. Y.B. Yin and J.M. Zhang: ISIJ Int., 2020, vol. 61, pp. 853–64.

    Article  Google Scholar 

  12. T. Zhang, Z.G. Luo, C.L. Liu, H. Zhou, and Z.S. Zhou: Powder Technol., 2015, vol. 273, pp. 154–64.

    Article  CAS  Google Scholar 

  13. W.D. Yang, Z.L. Luo, Y.J. Gu, Z.Y. Liu, and Z.S. Zou: Powder Technol., 2020, vol. 361, pp. 769–81.

    Article  CAS  Google Scholar 

  14. T. Hibiki and M. Ishii: J. Heat Mass Transf., 2000, vol. 43, pp. 2711–26.

    Article  CAS  Google Scholar 

  15. M. Ishii and S. Kim: Nucl. Sci. Eng., 2004, vol. 146, pp. 257–73.

    Article  CAS  Google Scholar 

  16. F. Lehr and D. Mewes: Chem. Eng. Sci., 2001, vol. 56, pp. 1159–66.

    Article  CAS  Google Scholar 

  17. Q. Wu, S. Kim, M. Ishii, and S. Beus: J. Heat Mass Transf., 1998, vol. 41, pp. 1103–12.

    Article  Google Scholar 

  18. Z.Q. Liu, B.K. Li, F.S. Qi, and S.C.P. Chueng: Powder Technol., 2018, vol. 319, pp. 139–47.

    Article  Google Scholar 

  19. F. Nicoud and F. Ducros: Flow Turbul. Combust., 1999, vol. 62(3), pp. 183–200.

    Article  CAS  Google Scholar 

  20. Y. Sato, M. Sadatomi, K. Sekoguchi, and J. Multiph: Flow, 1975, vol. 2, pp. 79–87.

    Google Scholar 

  21. T. Ma, T. Ziegenhein, D. Lucas, E. Krepper, and J. Fröhlich: Int. J. Heat Fluid Flow, 2015, vol. 56, pp. 51–9.

    Article  Google Scholar 

  22. M. Ishii and N. Zuber: AICHE J., 1979, vol. 5, pp. 843–55.

    Article  Google Scholar 

  23. A. Tomiyama, G. Celata, S. Hosokawa, and S. Yoshida: Int. J. Multiph. Flow, 2002, vol. 28, pp. 1497–519.

    Article  CAS  Google Scholar 

  24. J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comput. Phys., 1992, vol. 100(2), pp. 335–54.

    Article  CAS  Google Scholar 

  25. C.D. Huang, H.C. Zhou, L.F. Zhang, W. Yang, J. Zhang, R. Ying, and W. Chen: Steel Res. Int., 2021, vol. 93, p. 2100350.

    Article  Google Scholar 

  26. L. Štrubelj and I. Tiselj: Int. J. Numer. Methods Eng., 2011, vol. 85, pp. 575–90.

    Article  Google Scholar 

  27. R. Meller, F. Schlegel, and D. Lucas: Int. J. Numer. Methods Fluid, 2021, vol. 93, pp. 748–73.

    Article  CAS  Google Scholar 

  28. S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, and L. Tobiska: Int. J. Numer. Methods Fluids, 2009, vol. 60, pp. 1259–88.

    Article  Google Scholar 

  29. Z.Q. Liu, B. Li, A. Vakhrushev, M.H. Wu, and A. Ludwig: Steel Res. Int., 2019, vol. 90, p. 1800117.

    Article  Google Scholar 

  30. S. Sarkar, V. Singh, S.K. Ajmani, R.K. Singh, and E.Z. Chacko: ISIJ Int., 2018, vol. 58, pp. 68–77.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support by the National Natural Science Foundation of China (U1960202).

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yang, J. & Liu, Y. Numerical Investigation for Effects of Polydisperse Argon Bubbles on Molten Steel Flow and Liquid Slag Entrapment in a Slab Continuous Casting Mold. Metall Mater Trans B 53, 3707–3721 (2022). https://doi.org/10.1007/s11663-022-02634-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02634-y