Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Effects of combined menaquinone-4 and PTH1–34 treatment on osetogenesis and angiogenesis in calvarial defect in osteopenic rats

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate the effect of combining human parathyroid hormone (1–34) (PTH1–34; PTH) and menaquinone-4 (MK-4) on calvarial bone defect repair in osteopenic rats.

Methods

Fourteen week olds were subject to craniotomy for the establishment of osteopenic animal models fed through a chronically low-protein diet. After that, critical calvarial defect model was established and all rats were randomly divided into four groups: sham, MK-4, PTH, and PTH + MK-4. The animals received MK-4 (30 mg/kg/day), PTH1–34 (60 μg/kg, three times a week), or PTH1–34 (60 μg/kg, three times a week) plus MK-4 (30 mg/kg/day) for 8 weeks, respectively. Serum γ-carboxylated osteocalcin (Gla-OC) levels, histological and immunofluorescent labeling were employed to evaluate the bone formation and mineralization in calvarial bone defect. In addition, Microfil perfusion, immunohistochemical, and micro-CT suggested enhanced angiogenesis and bone formation in calvarial bone healing.

Results

In this study, treatment with either PTH1–34 or MK-4 promoted bone formation and vascular formation in calvarial bone defects compared with the sham group. In addition, combined treatment of PTH1–34 plus MK-4 increased serum level of Gla-OC, improved vascular number and vascular density, and enhanced bone formation in calvarial bone defect in osteopenic conditions as compared with monotherapy.

Conclusions

In summary, this study indicated that PTH1–34 plus MK-4 combination therapy accelerated bone formation and angiogenesis in calvarial bone defects in presence of osteopenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Dayer, T.C. Brennan, R. Rizzoli, P. Ammann, PTH improves titanium implant fixation more than pamidronate or renutrition in osteopenic rats chronically fed a low protein diet. Osteoporos. Int. 21(6), 957–967 (2010)

    Article  CAS  Google Scholar 

  2. Z. Tao, W. Zhou, K. Tu, Z. Huang, Q. Zhou, T. Sun, Y. Lv, W. Cui, L. Yang, Treatment study of distal femur for parathyroid hormone (1-34) and β-tricalcium phosphate on bone formation in critical-sized defects in osteopenic rats. J. Craniomaxillofac. Surg. 43(10), 2136–2143 (2015)

    Article  Google Scholar 

  3. F. Kaleagasioglu, E. Olcay, R. Onur, Statins as potential agents for the prevention and treatment of osteoporosis. Endocrine 62(1), 269–269 (2018)

    Article  CAS  Google Scholar 

  4. L.M. Metcalf, T.J. Aspray, E.V. Mccloskey, The effects of parathyroid hormone peptides on the peripheral skeleton of postmenopausal women. A systematic review. Bone 99, 39–46 (2017)

    Article  CAS  Google Scholar 

  5. Y. Rhee, R. Namgung, D.H. Park, H.C. Lee, G.B. Huh, S.K. Lim, The effects of recombinant human parathyroid hormone, rhPTH(1-84), on bone mass in undernourished rats. J. Endocrinol. 174(3), 419–425 (2002)

    Article  CAS  Google Scholar 

  6. M. Sato, M. Westmore, J. Clendenon, S. Smith, B. Hannum, G.Q. Zeng, R. Brommage, C.H. Turner, Three-dimensional modeling of the effects of parathyroid hormone on bone distribution in lumbar vertebrae of ovariectomized cynomolgus macaques. Osteoporos. Int.11(10), 871–880 (2000)

    Article  CAS  Google Scholar 

  7. N. Andersson, M.K. Lindberg, C. Ohlsson, K. Andersson, B. Ryberg, Repeated in vivo determinations of bone mineral density during parathyroid hormone treatment in ovariectomized mice. J. Endocrinol. 170(3), 529 (2001)

    Article  CAS  Google Scholar 

  8. Z.S. Tao, W.S. Zhou, K.K. Tu, Z.L. Huang, Q. Zhou, T. Sun, Y.X. Lv, W. Cui, L. Yang, Effect exerted by Teriparatide upon Repair Function of beta-tricalcium phosphate to ovariectomised rat’s femoral metaphysis defect caused by osteoporosis. Injury 46(11), 2134–2141 (2015). https://doi.org/10.1016/j.injury.2015.07.042

    Article  Google Scholar 

  9. Y. Gabet, R. Müller, J. Levy, R. Dimarchi, M. Chorev, I. Bab, D. Kohavi, Parathyroid hormone 1-34 enhances titanium implant anchorage in low-density trabecular bone: a correlative micro-computed tomographic and biomechanical analysis. Bone 39(2), 276–282 (2006)

    Article  CAS  Google Scholar 

  10. Z.S. Tao, W.S. Zhou, B.L. Bai, W. Cui, Y.X. Lv, X.B. Yu, Z.L. Huang, K.K. Tu, Q. Zhou, T. Sun, The effects of combined human parathyroid hormone (1-34) and simvastatin treatment on the interface of hydroxyapatite-coated titanium rods implanted into osteopenic rats femurs. J. Mater. Sci. Mater. Med. 27(3), 43 (2016)

    Article  Google Scholar 

  11. P. Esbrit, M.V. Alvarez-Arroyo, M.F. De, O. Martin, M.E. Martinez, C. Caramelo, C-terminal parathyroid hormone-related protein increases vascular endothelial growth factor in human osteoblastic cells. J. Am. Soc. Nephrol. 11(6), 1085–1092 (2000)

    CAS  PubMed  Google Scholar 

  12. S.Y. Kang, S.S. Deshpande, A. Donneys, J.J. Rodriguez, N.S. Nelson, P.A. Felice, D.B. Chepeha, S.R. Buchman, Parathyroid hormone reverses radiation induced hypovascularity in a murine model of distraction osteogenesis. Bone 56(1), 9–15 (2013)

    Article  CAS  Google Scholar 

  13. D.D. Bikle, T. Sakata, C. Leary, H. Elalieh, D. Ginzinger, C.J. Rosen, W. Beamer, S. Majumdar, B.P. Halloran, Insulin‐like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone. J. Bone Mineral. Res. 17(9), 1570–1578 (2002)

    Article  CAS  Google Scholar 

  14. G.J. Atkins, K.J. Welldon, A.R. Wijenayaka, L.F. Bonewald, D.M. Findlay, Vitamin K promotes mineralization, osteoblast-to-osteocyte transition, and an anticatabolic phenotype by {gamma}-carboxylation-dependent and -independent mechanisms. Am. J. Physiol. Cell. Physiol. 297(6), C1358 (2009)

    Article  CAS  Google Scholar 

  15. D. Mandatori, L. Penolazzi, C. Pipino, T.P. Di, S.S. Di, P.N. Di, S. Trevisani, M. Angelozzi, M. Ucci, R. Piva, Menaquinone-4 enhances osteogenic potential of human amniotic fluid mesenchymal stem cells cultured in a 2D and 3D dynamic culture system. J. Tissue Eng. Regen. Med. 12(6), 447–459 (2017)

    PubMed  Google Scholar 

  16. N. Sasaki, E. Kusano, H. Takahashi, Y. Ando, K. Yano, E. Tsuda, Y. Asano, Vitamin K2 inhibits glucocorticoid-induced bone loss partly by preventing the reduction of osteoprotegerin (OPG). J. Bone Mineral. Metab. 23(1), 41–47 (2005)

    Article  CAS  Google Scholar 

  17. J. Iwamoto, A. Seki, Y. Sato, H. Matsumoto, T. Tadeda, J.K. Yeh, Vitamin K2 promotes bone healing in a rat femoral osteotomy model with or without glucocorticoid treatment. Calcif. Tissue Int. 86(3), 234–241 (2010)

    Article  CAS  Google Scholar 

  18. M. Igarashi, Y. Yogiashi, M. Mihara, I. Takada, H. Kitagawa, S. Kato, Retraction for Igarashi et al., Vitamin K induces osteoblast differentiation through pregnane X receptor-mediated transcriptional control of the Msx2 gene. Mol. Cell. Biol. 34(5), 918 (2014)

    Article  Google Scholar 

  19. Y. Zhang, J. Yin, D. Hao, C. Zhang, Y.S. Gao, Vitamin K2 ameliorates damage of blood vessels by glucocorticoid: a potential mechanism for its protective effects in glucocorticoid-induced osteonecrosis of the femoral head in a rat model. Int. J. Biol. Sci. 12(7), 776 (2016)

    Article  CAS  Google Scholar 

  20. H. Li, Q. Zhou, B.L. Bai, S.J. Weng, Z.Y. Wu, Z.J. Xie, Z.H. Feng, L. Cheng, V. Boodhun, L. Yang, Effects of combined human parathyroid hormone (1-34) and menaquinone-4 treatment on the interface of hydroxyapatite-coated titanium implants in the femur of osteoporotic rats. J. Bone Mineral Metabolism, 1–9 (2017). https://doi.org/10.1007/s00774-017-0893-9

  21. Q. Xie, W. Zi, Y. Huang, X. Bi, H. Zhou, L. Ming, Y. Zhang, Y. Wang, N. Ni, S. Jing, Characterization of human ethmoid sinus mucosa derived mesenchymal stem cells (hESMSCs) and the application of hESMSCs cell sheets in bone regeneration. Biomaterials 66, 67 (2015)

    Article  CAS  Google Scholar 

  22. S. Bourrin, A. Toromanoff, P. Ammann, J.P. Bonjour, R. Rizzoli, Dietary protein deficiency induces osteoporosis in aged male rats. J. Bone Mineral. Res. 15(8), 1555–1563 (2010)

    Article  Google Scholar 

  23. P.P. Spicer, J.D. Kretlow, S. Young, J.A. Jansen, F.K. Kasper, A.G. Mikos, Evaluation of bone regeneration using the rat critical size calvarial defect. Nat. Protoc. 7(10), 1918–1929 (2012)

    Article  CAS  Google Scholar 

  24. N. Nagura, J. Komatsu, H. Iwase, H. Hosoda, O. Ohbayashi, I. Nagaoka, K. Kaneko, Effects of the combination of vitamin K and teriparatide on the bone metabolism in ovariectomized rats. Biomed. Rep. 3(3), 295 (2015)

    Article  CAS  Google Scholar 

  25. G.L. Barnes, S. Kakar, S. Vora, E.F. Morgan, L.C. Gerstenfeld, T.A. Einhorn, Stimulation of fracture-healing with systemic intermittent parathyroid hormone treatment. J. Bone Jt. Surg. Am. 90(Suppl 1(2)), 120 (2008)

    Article  Google Scholar 

  26. R.L. Jilka, R.S. Weinstein, T. Bellido, P. Roberson, A.M. Parfitt, S.C. Manolagas, Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J. Clin. Investig. 104(4), 439–446 (1999)

    Article  CAS  Google Scholar 

  27. A.P. Kusumbe, S.K. Ramasamy, R.H. Adams, Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507(7492), 323–328 (2014). https://doi.org/10.1038/nature13145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. G. Karsenty, E.F. Wagner, Reaching a genetic and molecular understanding of skeletal development. Dev. Cell. 2(4), 389–406 (2002)

    Article  CAS  Google Scholar 

  29. M. Wu, J.D. Zhang, R.N. Tang, S.D. Crowley, H. Liu, L.L. Lv, K.L. Ma, B.C. Liu, Elevated PTH induces endothelial to chondrogenic transition in aortic endothelial cells. Am. J. Physiol. Renal Physiol. 312(3), ajprenal.00210.02016 (2016).

  30. J. Iwamoto, Vitamin K2 Therapy for Postmenopausal Osteoporosis. Nutrients 6(5), 1971–1980 (2014)

    Article  Google Scholar 

  31. J. Stenflo, P. Fernlund, W. Egan, P. Roepstorff, Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc. Natl Acad. Sci. USA 71(7), 2730–2733 (1974)

    Article  CAS  Google Scholar 

  32. G.L. Nelsestuen, T.H. Zytkovicz, J.B. Howard, The mode of action of vitamin K identification of γ-carboxyglutamic acid as a component of prothROMBIN. J. Biol. Chem. 249(19), 6347–6350 (1974)

    CAS  PubMed  Google Scholar 

  33. T. Inoue, T. Fujita, H. Kishimoto, T. Makino, T. Nakamura, T. Nakamura, T. Sato, K. Yamazaki, Randomized controlled study on the prevention of osteoporotic fractures (OF study): a phase IV clinical study of 15-mg menatetrenone capsules. J. Bone & Mineral. Metab. 27(1), 66–75 (2009)

    Article  CAS  Google Scholar 

  34. T. Shimizu, M. Takahata, Y. Kameda, H. Hamano, T. Ito, H. Kimura-Suda, M. Todoh, S. Tadano, N. Iwasaki, Vitamin K-dependent carboxylation of osteocalcin affects the efficacy of teriparatide (PTH(1-34)) for skeletal repair. Bone 64, 95–101 (2014). https://doi.org/10.1016/j.bone.2014.04.005

    Article  CAS  PubMed  Google Scholar 

  35. H.H. Thijssen, M.J. Drittij-Reijnders, Vitamin K status in human tissues: tissue-specific accumulation of phylloquinone and menaquinone-4. Br. J. Nutr. 75(1), 121–127 (1996)

    Article  CAS  Google Scholar 

  36. M. Shiraki, Y. Shiraki, C. Aoki, M. Miura, Vitamin K2 (menatetrenone) effectively prevents fractures and sustains lumbar bone mineral density in osteoporosis. J. Bone Mineral. Res. 15(3), 515–521 (2000)

    Article  CAS  Google Scholar 

  37. I. Jun, Vitamin K? Therapy for postmenopausal osteoporosis. Nutrients 6(5), 1971–1980 (2014)

    Article  Google Scholar 

  38. K.P.D. Yasuko, K. Hoshi, Vitamin K2 enhances osteocalcin accumulation in the extracellular matrix of human osteoblasts in vitro. J. Bone Mineral. Res. 12(3), 431 (1997)

    Article  Google Scholar 

  39. H. Yoshiji, R. Noguchi, M. Toyohara, Y. Ikenaka, M. Kitade, K. Kaji, M. Yamazaki, J. Yamao, A. Mitoro, M. Sawai, Combination of vitamin K2 and angiotensin-converting enzyme inhibitor ameliorates cumulative recurrence of hepatocellular carcinoma. J. Hepatol. 51(2), 315–321 (2009)

    Article  CAS  Google Scholar 

  40. J.M. Hegarty, H. Yang, N.C. Chi, UBIAD1-mediated vitamin K2 synthesis is required for vascular endothelial cell survival and development. Development 140(8), 1713–1719 (2013)

    Article  CAS  Google Scholar 

  41. Y.L. Zhang, J.H. Yin, H. Ding, W. Zhang, C.Q. Zhang, Y.S. Gao, Vitamin K2 prevents glucocorticoid-induced osteonecrosis of the femoral head in rats. Int. J. Biol. Sci. 12(4), 347–358 (2016)

    Article  CAS  Google Scholar 

  42. Y. Iwasaki, H. Yamato, H. Murayama, T. Takahashi, I. Ezawa, K. Kurokawa, M. Fukagawa, Menatetrenone prevents osteoblast dysfunction in unilateral sciatic neurectomized rats. J. Pharmacol. Sci. 90(1), 88–93 (2002)

    CAS  Google Scholar 

  43. K. Hara, Y. Akiyama, T. Nakamura, S. Murota, I. Morita, The inhibitory effect of vitamin K2 (menatetrenone) on bone resorption may be related to its side chain. Bone 16(2), 179–184 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the Science Technology Department of Zhejiang Province (Grant No.:2016C37122), National Natural Science Foundation of China (Grant No.:81772348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Animals were handled with the approval of the Animal Experimentation Ethics Committee of Second Affiliated Hospital of Wenzhou Medical University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, SJ., Xie, ZJ., Wu, ZY. et al. Effects of combined menaquinone-4 and PTH1–34 treatment on osetogenesis and angiogenesis in calvarial defect in osteopenic rats. Endocrine 63, 376–384 (2019). https://doi.org/10.1007/s12020-018-1761-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-018-1761-7

Keywords