Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Matrix parametrized shift registers

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

High speed pseudorandom sequence generators have played roles in an array of applications in communications, cryptography, and computing. At the heart of many of these generators are shift registers of various types. Researchers have studied linear feedback shift registers (LFSRs), feedback with carry shift registers (FCSRs), and various generalizations such as ring FCSRS and algebraic feedback shift registers. The analysis of these sequence generators typically proceeds by defining an algebraic structure on the set of infinite output sequences, based on a choice of uniformizing parameter (e.g., power series for LFSRs, N-adic numbers for FCSRs). In this paper we introduce a new generalization of FCSRs in which the uniformizing parameter \(N\in \mathbb {Z}\) is replaced by a square matrix, T, resulting in what we call T-generators. We describe an algebraic structure, the T-adic numbers, and use it to study the periodicity of T-generators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. ”stands for “long”.

  2. Here “ ” stands for “long”.

References

  1. Arnault, F., Berger, T., Pousse, B.: A matrix approach for FCSR automata. Cryptogr. Commun. Discrete Struct. Boolean Funct. Seq. 3:2, 109–139 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Borevich, Z., Shefarevich, I.: Number Theory. Academic Press, Orlando (1966)

    Google Scholar 

  3. Couture, R., L’Écuyer, P.: Distribution properties of multiply–with–carry random number generators. Math. Comp. 66, 591–607 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Golomb, S: Shift Register Sequences. Aegean Park Press, Laguna Hills (1982)

    MATH  Google Scholar 

  5. Goresky, M., Klapper, A.: Fibonacci and Galois mode implementation of feedback with carry shift registers. IEEE Trans. Info. Theory 48, 2826–2836 (2002)

    Article  MATH  Google Scholar 

  6. Goresky, M., Klapper, A.: Algebraic Shift Register Sequences. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  7. Gouvea, F.: p-adic Numbers: An Introduction. Springer Verlag, Berlin (1997)

    Book  MATH  Google Scholar 

  8. Klapper, A., Goresky, M.: Feedback shift registers, combiners with memory, and 2-Adic span. J. Crypt. 10, 111–147 (1997)

    Article  MATH  Google Scholar 

  9. Klapper, A., Xu, J.: Algebraic feedback shift registers. Theor. Comput. Sci. 226, 61–93 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lin, Z., Lin, D., Pei, D.: Practical construction of ring LFSRs and ring FCSRs with low diffusion delay for hardware cryptographic applications. In press, Cryptography and Communications - Discrete Structures, Boolean Functions and Sequences. Available on line at http://link.springer.com/article/10.1007/s12095-016-0183-8

  11. Marjane, A., Allailou, B.: Vectorial conception of FCSR. In: Carlet, C., Pott, A. (eds.) SETA 2010, LNCS, vol. 6338, pp 240?-252. Springer Verlag, New York (2010)

    Google Scholar 

  12. Marsaglia, G., Zaman, A.: A new class of random number generators. Ann. Appl. Probab. 1, 462–480 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Noras, J.: Fast pseudorandom sequence generators: Linear feedback shift registers, cellular automata, and carry feedback shift registers. Univ. Bradford Elect. Eng. Dept., Rep. 94 (1997)

  14. Zierler, N.: Linear recurring sequences. J. Soc. Indust. Math. 7, 31–48 (1959)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. CNS-1420227. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Klapper.

Additional information

This article is part of the Topical Collection on Sequences and Their Applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klapper, A. Matrix parametrized shift registers. Cryptogr. Commun. 10, 369–382 (2018). https://doi.org/10.1007/s12095-017-0226-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-017-0226-9

Keywords

Mathematics Subject Classification (2010)