Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimal balking strategies for high-priority customers in M/G/1 queues with 2 classes of customers

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

This paper studies the optimal balking strategies of customers with a higher priority in the single-server M/G/1 queue, where there are two classes of customers who have different priorities. When a low-priority customer is being served, the high-priority customer joins in the system and will be served immediately while the low-priority customer will go back to the head of the queue of its class. Upon arrival, the high-priority customers decide for themselves whether to join or balk based on a linear reward-cost structure that incorporates their desire for service, as well as their unwillingness to wait. We identify equilibrium strategies and socially optimal strategies under one information assumption. The high-priority customers make individual decisions in a unobservable queue. By deriving and solving a set of system equations, we obtain equilibrium strategies and socially optimal strategies. Finally we illustrate our results via numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fraser, A.G., Morgan, S.P.: Queueing and framing disciplines for a mixture of data traffic types. AT&T Bell Lab. Tech. 63, 117–126 (1984)

    Google Scholar 

  2. Goerg, C.: Evaluation of optimal SRPT strategy with overhead. IEEE Trans. 34, 338–344 (1986)

    Article  Google Scholar 

  3. Lim, Y., Kobza, J.E.: Analysis of a delay-dependent priority discipline in a integrated multiclass traffic fast packet switch. IEEE Trans. 38, 659–665 (1990)

    Article  Google Scholar 

  4. Daigle, J.N., Whitehead, S.D.: Transmission facility sharing for integrated services. In: Proceedings of the IEEE INFOCOM’84, pp. 236–245 (1984)

  5. Daigle, J.N.: Message delay with prioritized HOLP and round-robin packet serving. IEEE Trans. 35, 609–619 (1987)

    Article  Google Scholar 

  6. Cho, Y.Z., Un, C.K.: Analysis of the M/G/1 queue under a combined preemptive/ nonpreemptive priority discipline. IEEE Trans. 41, 132–141 (1993)

    Article  MATH  Google Scholar 

  7. Avrachenkov, K., Vilchevsky, N.: Priority queueing with finite buffer size and randomized push-out mechanism. Perform. Eval. 41, 1–16 (2005)

    Article  Google Scholar 

  8. Kramer, S., Assad, A.: Alternating priority versus FCFS scheduling in a two-class queueing system. Oper. Res. Lett. 40, 506–509 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao, S.: A preemptive priority retrial queue with two classes of customers and general retrial times. Oper. Res. Int. J. 15, 233–251 (2015)

    Article  Google Scholar 

  10. Naor, P.: The regulation of queue size by levying tolls. Econometrica 37, 15–24 (1969)

    Article  MATH  Google Scholar 

  11. Edelson, N.M., Hildebrand, D.K.: Congestion tolls for Poisson queueing processes. Econometrica 43, 81–92 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, H., Frank, M.Z.: State dependent pricing with a queue. IIE Trans. 33, 847–860 (2001)

    Google Scholar 

  13. Chen, H., Frank, M.Z.: Monopoly pricing when customers queue. IIE Trans. 36, 569–581 (2004)

    Article  Google Scholar 

  14. Hassin, R.: Consumer information in markets with random product quality: the case of queues and balking. Econometrica 54, 1185–1195 (1986)

    Article  MathSciNet  Google Scholar 

  15. Yechiali, U.: On optimal balking rules and toll charges in the GI/M/1 queueing process. Oper. Res. 19, 349–370 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hassin, R., Haviv, M.: To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems. Kluwer Academic Publishers, Boston (2003)

    Book  MATH  Google Scholar 

  17. Akşin, O.Z., Armony, M., Mehrotra, V.: The modern call-center: a multi- disciplinary perspective on operations management research. Prod. Oper. Manag. 16, 665–688 (2007)

    Google Scholar 

  18. Guo, P., Zipkin, P.: Analysis and comparison of queues with different levels of delay information. Manag. Sci. 53, 962–970 (2007)

    Article  MATH  Google Scholar 

  19. Guo, P., Sun, W., Wang, Y.: Equilibrium and optimal strategies to join a queue with partial information on service times. Eur. J. Oper. Res. 214, 284–297 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, F., Wang, J., Liu, B.: Equilibrium balking strategies in Markovian queues with working vacations. Appl. Math. Model. 37, 8264–8282 (2013)

    Article  MathSciNet  Google Scholar 

  21. Ma, Y., Liu, W., Li, J.: Equilibrium balking behavior in the Geo /Geo / 1 queueing system with multiple vacations. Appl. Math. Model. 37, 3861–3878 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lee, D.C., Park, S.J.: Performance analysis of queueing strategies for multiple priority calls inmultiservice personal communications services. Comput. Commun. 23, 1069–1083 (2000)

    Article  Google Scholar 

  23. Sun, W., Guo, P., Tian, N.: Relative priority policies for minimizing the cost of queueing systems with service discrimination. Appl. Math. Model. 33, 4241–4258 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Brouns, G.J.F., Wal, J.V.D.: Optimal threshold policies in a two-class preemptive priority queue with admission and termination control. Queue. Syst. 54, 21–33 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shang, Y.: Consensus formation of two-level opinion dynamics. Acta Math. Sci. 34, 1029–1040 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ross, S.M.: Introduction to Probability Models. Academic Press, Boston (1989)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the support from National Natural Science Foundation of China #11201408 and Natural Science Foundation of Hebei Province, China #A2013203148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Xu, X. & Wang, X. Optimal balking strategies for high-priority customers in M/G/1 queues with 2 classes of customers. J. Appl. Math. Comput. 51, 623–642 (2016). https://doi.org/10.1007/s12190-015-0923-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-015-0923-5

Keywords

Mathematics Subject Classification