Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Novel applications of bipolar fuzzy graphs to decision making problems

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Zhang introduced the concept of bipolar fuzzy sets as a generalization of fuzzy sets. Bipolar fuzzy sets have shown advantages in solving decision making problems than fuzzy sets. In this research paper, we study several different types of domination, including equitable domination, k-domination and restrained domination in bipolar fuzzy graphs. We present novel applications of bipolar fuzzy graphs to decision making problems. We also present an algorithm for computing dominating number in our applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Akram, M.: Bipolar fuzzy graphs. J. Inf. Sci. 181(24), 5548–5564 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akram, M.: Bipolar fuzzy graphs with applications. Knowl. Based Syst. 39, 1–8 (2013)

    Article  MATH  Google Scholar 

  3. Akram, M., Dudek, W.A.: Regular bipolar fuzzy graphs. Neural Comput. Appl. 21(1), 197–205 (2012)

    Article  Google Scholar 

  4. Akram, M., Li, S.-G., Shum, K.: Antipodal bipolar fuzzy graphs. Ital. J. Pure Appl. Math. 31(56), 425–438 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Akram, M., Alshehri, N., Davvaz, B., Ashraf, A.: Bipolar fuzzy digraphs in decision support systems. J. Mult. Valued Logic Syst. 27, 531–551 (2016)

    Google Scholar 

  6. Bhattacharya, P.: Some remarks on fuzzy graphs. Pattern Recognit. Lett. 6, 297–302 (1987)

    Article  MATH  Google Scholar 

  7. Bharathi, P.: A note on \(k\)-domination in fuzzy graphs. Int. J. Fuzzy Math. Syst. 4(1), 121–124 (2014)

    MathSciNet  Google Scholar 

  8. Chen, J., Li, S., Ma, S., Wang, X.: \(m\)-polar fuzzy sets: An extension of bipolar fuzzy sets, Sci. World J. 2014, Article Id 416530, 8 (2014)

  9. Cockayne, E.J., Hedetnieme, S.T.: Towards a theory of domination in graphs. Networks 7, 247–261 (1977)

    Article  MathSciNet  Google Scholar 

  10. Dharmalingam, K.M., Rani, M.: Equitable domination in fuzzy graphs. Int. J. Pure Appl. Math. 94(5), 661–667 (2014)

    Article  MATH  Google Scholar 

  11. Dharmalingam, K.M., Rani, M.: Total equitable domination in fuzzy graphs. Bull. Int. Math. Virtual Inst. 6, 49–54 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Dharmalingam, K.M.: Equitable associate graph of a graph. Bull. Int. Math. Virtual Inst. 2(1), 109–116 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Domke, G.S., Hattingh, J.H., Hedetniemi, S.T., Laskar, R.C., Markus, L.R.: Restrained domination in graphs. Discret. Math. 203, 61–69 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dubois, D., Kaci, S. Prade, H.: Bipolarity in Reasoning and Decision, an Introduction, International Conference on Information Processing and Management, IPMU’04, pp. 959–966 (2004)

  15. Kauffman, A.: Introduction to la Theorie des Sous-emsembles Flous. Masson et Cie 1, (1973)

  16. Mordeson, J.N., Nair, P.S.: Fuzzy Graphs and Fuzzy Hypergraphs. Physica Verlag, Heidelberg (1998). Second Edition (2001)

    MATH  Google Scholar 

  17. Lee, K.-M.: Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets and bipolar-valued fuzzy sets. J. Fuzzy Logic Intell. Syst. 14, 125–129 (2004)

    Google Scholar 

  18. Mathew, S., Sunitha, M.: Types of arcs in a fuzzy graph. Inf. Sci. 179(11), 1760–1768 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sarwar, M., Akram, M.: Novel concepts bipolar fuzzy competition graphs. J. Appl. Math. Comput. (2016). doi:10.1007/s12190-016-1021-z

  20. Nagoorgani, A., Ahamed, M.B.: Strong and weak domination in fuzzy graphs. East Asian Math. J. 23(1), 1–8 (2007)

    MATH  Google Scholar 

  21. Nagoorgani, A., Chandrasekaran, V.T.: Domination in fuzzy graph. Adv. Fuzzy Sets Syst. 1(1), 17–26 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Nagoorgani, A., Vadivel, P.: Fuzzy independent dominating set. Adv. Fuzzy Sets Syst. 2(1), 99–108 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Nagoorgani, A., Akram, M., Vijayalakshmi, P.: Certain types of fuzzy sets in a fuzzy graph. Int. J. Mach. Learn. Cyber 7(4), 573–579 (2016)

    Article  Google Scholar 

  24. Karunambigai, M.G., Akram, M., Palanive, K., Sivasankar, S.: Domination in bipolar fuzzy graphs, Proceedings of International Conference on Fuzzy System, FUZZ-IEEE-2013, pp. 1–6 (2013)

  25. Paravathi, R., Thamizhendhi, G.: Domination in intuitionistic fuzzy graphs. In: Fourteenth International Conference on IFSs, Sofia, 15–16 May 2010, vol. 16, no. 2, pp. 39–49 (2012)

  26. Ponnappan, C.Y., Ahamed, S.B., Surulinathan, P.: Edge domination in fuzzy graphs new approach. Int. J. Eng. Appl. Sci. Res. 4(1), 14–17 (2015)

  27. Rosenfeld, A.: Fuzzy graphs. Fuzzy Sets and Their Applications. Academic Press, New York (1975)

    Google Scholar 

  28. Somasundram, A., Somasundram, S.: Domination in fuzzy graphs-I. Pattern Recognit. Lett. 19, 787–791 (1998)

    Article  Google Scholar 

  29. Slater, P., Hedetniemi, S., Haynes, T.W.: Fundamentals of Domination in Graphs. CRC Press, Bocz Raton (1998)

    MATH  Google Scholar 

  30. Swaminathan, V., Dharmalingam, K.M.: Degree equitable domination on graphs. Kragujevac J. Math. 35(1), 177–183 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Talebi, A.A., Eslami, M.: Restrained and global restrained domination in fuzzy graphs. J. Adv. Res. Pure Math. 5, 72 (2013)

    Article  MathSciNet  Google Scholar 

  32. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci 3(2), 177–200 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  34. Zhang, W.-R.: Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis, Proc. of IEEE conf. Fuzzy. Inf. Proc. Soc. Biannual Conf, 305-309, (1994)

Download references

Acknowledgments

The author is highly thankful to the Editor-in-Chief and the referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, M., Waseem, N. Novel applications of bipolar fuzzy graphs to decision making problems. J. Appl. Math. Comput. 56, 73–91 (2018). https://doi.org/10.1007/s12190-016-1062-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-016-1062-3

Keywords

Mathematics Subject Classification