Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Potentials of radiomics for cancer diagnosis and treatment in comparison with computer-aided diagnosis

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Computer-aided diagnosis (CAD) is a field that is essentially based on pattern recognition that improves the accuracy of a diagnosis made by a physician who takes into account the computer’s “opinion” derived from the quantitative analysis of radiological images. Radiomics is a field based on data science that massively and comprehensively analyzes a large number of medical images to extract a large number of phenotypic features reflecting disease traits, and explores the associations between the features and patients’ prognoses for precision medicine. According to the definitions for both, you may think that radiomics is not a paraphrase of CAD, but you may also think that these definitions are “image manipulation”. However, there are common and different features between the two fields. This review paper elaborates on these common and different features and introduces the potential of radiomics for cancer diagnosis and treatment by comparing it with CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Doi K. Current status and future potential of computer-aided diagnosis in medical imaging. Br J Radiol. 2005;78(1):3–19.

    Article  Google Scholar 

  2. Doi K. Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology. Phys Med Biol. 2006;51(13):R5–27.

    Article  Google Scholar 

  3. Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Gr. 2007;31(4–5):198–211.

    Article  Google Scholar 

  4. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ. Radiomics: Extracting more information from medical images using advanced feature analysis. J Cancer. 2012;48:441–6.

    Google Scholar 

  5. Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006. https://doi.org/10.1038/ncomms5006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arimura H, Soufi M. A review on radiomics for personalized medicine in cancer treatment. Med Imaging Technol. 2018;36(2):81–9.

    Google Scholar 

  7. Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.

    Article  CAS  Google Scholar 

  8. Itadani H, Mizuarai S, Kotani H. Can systems biology understand pathway activation? Gene expression signatures as surrogate markers for understanding the complexity of pathway activation. Curr Genom. 2008;9(5):349–60.

    Article  CAS  Google Scholar 

  9. Peeken JC, Nüsslin F, Combs SE. “Radio-oncomics”: the potential of radiomics in radiation oncology. Strahlenther Onkol. 2017;193(10):767–79.

    Article  Google Scholar 

  10. Arimura H, Tokunaga C, Yamashita Y, Kuwazuru K. Magnetic resonance image analysis for brain CAD systems with machine learning. In: Suzuki K, editor. Machine learning in computer-aided diagnosis: medical imaging intelligence and analysis. Hershey: IGI Global; 2012. pp. 258–96.

    Chapter  Google Scholar 

  11. Duda RO, Hart PE, Stork DG. Pattern classification, 2nd ed. New York: Wiley-Interscience; 2000.

    Google Scholar 

  12. Giger ML, Chan HP, Boone J. Anniversary paper: history and status of CAD and quantitative image analysis: the role of medical physics and AAPM. Med Phys. 2008;35(12):5799–820.

    Article  Google Scholar 

  13. Shiraishi J, Li Q, Appelbaum D, Doi K. Computer-aided diagnosis and artificial intelligence in clinical imaging. Semin Nucl Med. 2011;41(6):449–62.

    Article  Google Scholar 

  14. Muramatsu C. Overview on subjective similarity of images for content-based medical image retrieval. Radiol Phys Technol. 2018;11(2):109–24.

    Article  Google Scholar 

  15. Yamaguchi M. Computer-aided differentiation for pathology images. In: Arimura H, editor. Image-based computer-assisted radiation therapy. Singapore: Springer; 2017.

    Google Scholar 

  16. Arimura H. Image-based computer-assisted radiation therapy. Singapore: Springer; 2017.

    Book  Google Scholar 

  17. Arimura H, Soufi M, Kamezawa H, Ninomiya K, Yamada M. Radiomics with artificial intelligence for precision medicine in radiation therapy. J Radiat Res. 2018;59:1–8 (Epub ahead of print).

    Article  Google Scholar 

  18. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning -data mining, inference, and prediction, 2nd ed. New York: Springer; 2008.

    Google Scholar 

  19. Yoo BC, Kim KH, Woo SM, et al. Clinical multi-omics strategies for the effective cancer management. J Proteom. 2017;188:97–106.

    Article  Google Scholar 

  20. Suzuki K. Computer-aided diagnosis: medical imaging intelligence and analysis. Hershey: IGI Global; 2012.

    Google Scholar 

  21. Balagurunathan Y, Kumar V, Gu Y, Kim J, Wang H, Liu Y, Goldgof DB, Hall LO, Korn R, Zhao B, Schwartz LH, Basu S, Eschrich S, Gatenby RA, Gillies RJ. Test-retest reproducibility analysis of lung CT image features. J Digit Imaging. 2014;27(6):805–23.

    Article  Google Scholar 

  22. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.

    Article  Google Scholar 

  23. Koo TK, Li MY. Erratum to “A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research” [J Chiropr Med. 2016;15(2):155–63]. J Chiropr Med. 2017;16(4):346.

    Article  Google Scholar 

  24. Kleinbaum DG. Survival analysis: a self-learning text. New York: Springer; 1996.

    Book  Google Scholar 

  25. Cox DR. Regression models and life tables (with discussion). J R Stat Soc B. 1972;34(2):187–220.

    Google Scholar 

  26. Bak SH, Park H, Lee HY, et al. Imaging genotyping of functional signaling pathways in lung squamous cell carcinoma using a radiomics approach. Sci Rep. 2018;8(1):3284. https://doi.org/10.1038/s41598-018-21706-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;3:610–21.

    Article  Google Scholar 

  28. Galloway MM. Texture analysis using gray level run lengths. Comput Gr Image Process. 1975;4:172–79.

    Article  Google Scholar 

  29. Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern. 1989;19:1264–74. https://doi.org/10.1109/21.44046.

    Article  Google Scholar 

  30. Thibault G. Texture indexes and gray level size zone matrix. Application to cell nuclei classification. In: Proc. Pattern Recognition and Information Processing. Minsk, Belarus, pp. 140–145, 2009.

  31. Soufi M, Arimura H, Nakamoto T, et al. Exploration of temporal stability and prognostic power of radiomic features based on electronic portal imaging device images. Phys Med Eur J Med Phys. 2018;46:32–44.

    Google Scholar 

  32. Shafiq-Ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, Abdalah MA, Schabath MB, Goldgof DG, Mackin D, Court LE, Gillies RJ, Moros EG. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys. 2017;44(3):1050–62.

    Article  CAS  Google Scholar 

  33. Soufi M, Arimura H, Nagami N. Identification of optimal mother wavelets in survival prediction of lung cancer patients using wavelet decomposition-based radiomic features. Med Phys. 2018. https://doi.org/10.1002/mp.13202 (Epub ahead of print).

    Article  PubMed  Google Scholar 

  34. Strang G, Nguyen T. Wavelets and filter banks. Wellesley: Wellesley-Cambridge; 1997.

    Google Scholar 

  35. Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Pattern Anal Mach Intell. 1989;11(7):674–93.

    Article  Google Scholar 

  36. Dettori L, Semler L. A comparison of wavelet, ridgelet, and curvelet-based texture classification algorithms in computed tomography. Comp Med Biol. 2007;37(4):486–98.

    Article  Google Scholar 

  37. Oakden-Rayner L, Carneiro G, Bessen T, Nascimento JC, Bradley AP, Palmer LJ. Precision radiology: predicting longevity using feature engineering and deep learning methods in a radiomics framework. Sci Rep. 2017;7(1):1648. https://doi.org/10.1038/s41598-017-01931-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    Article  CAS  Google Scholar 

  39. Ning Z, Luo J, Li Y, Han S, Feng Q, Xu Y, Chen W, Tao C, Zhang Y. Pattern classification for gastrointestinal stromal tumors by integration of radiomics and deep convolutional features. IEEE J Biomed Health Inform. 2018. https://doi.org/10.1109/JBHI.2018.2841992 (Epub ahead of print).

    Article  PubMed  Google Scholar 

  40. Shen C, Liu Z, Guan M, Song J, Lian Y, Wang S, Tang Z, Dong D, Kong L, Wang M, Shi D, Tian J. 2D and 3D CT radiomics features prognostic performance comparison in non-small cell lung cancer. Transl Oncol. 2017;10(6):886–94.

    Article  Google Scholar 

  41. JCGM 100:2008. Evaluation of measurement data—guide to the expression of uncertainty in measurement (PDF). In: Joint committee for guides in metrology; 2008.

  42. Zhao B, James LP, Moskowitz CS, Guo P, Ginsberg MS, et al. Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non-small cell lung cancer. Radiology. 2009;252(1):263–72.

    Article  Google Scholar 

  43. Zhao B, Schwartz LH, Kris MG. Data from RIDER_Lung CT. Cancer Imaging Arch. 2015. https://doi.org/10.7937/K9/TCIA.2015.U1X8A5NR.

    Article  Google Scholar 

  44. Kalpathy-Cramer J, Napel S, Goldgof D, Zhao B. Multi-site collection of lung CT data with nodule segmentations. TCIA. 2015. https://doi.org/10.7937/K9/TCIA.2015.1BUVFJR7.

    Article  Google Scholar 

  45. Kalpathy-Cramer J, Mamomov A, Zhao B, Lu L, Cherezov D, et al. Radiomics of lung nodules: a multi-institutional study of robustness and agreement of quantitative imaging features. Tomography. 2016;2(4):430–7.

    Article  Google Scholar 

  46. Berenguer R, Pastor-Juan MDR, Canales-Vázquez J, Castro-García M, Villas MV, Mansilla Legorburo F, Sabater S. Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. Radiology. 2018;288(2):407–15.

    Article  Google Scholar 

  47. Bologna M, Corino VDA, Montin E, Messina A, Calareso G, Greco FG, Sdao S, Mainardi LT. Assessment of stability and discrimination capacity of radiomic features on apparent diffusion coefficient images. J Digit Imaging. 2018. https://doi.org/10.1007/s10278-018-0092-9 (Epub ahead of print).

    Article  PubMed  Google Scholar 

  48. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–9.

    Article  CAS  Google Scholar 

  49. Jain AK, Duin RPW, Mao J. Statistical pattern recognition [Review]. IEEE Trans Pattern Anal Mach Intell. 2000;22:4–37.

    Article  Google Scholar 

  50. Chow S, Shao J, Wang H. Sample size calculations in clinical research. Chapman and Hall/CRC biostatistics series, 2nd ed. Boca Raton: CRC; 2008.

    Google Scholar 

  51. Parmar C, Grossmann P, Bussink J, et al. Machine learning methods for quantitative radiomic biomarkers. Sci Rep. 2015;5:13087. https://doi.org/10.1038/srep13087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Leger S, Zwanenburg A, Pilz K, et al. A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Sci Rep. 2017;7(1):13206. https://doi.org/10.1038/s41598-017-13448-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Abdollahi H, Mostafaei S, Cheraghi S, et al. Cochlea CT radiomics predicts chemoradiotherapy induced sensorineural hearing loss in head and neck cancer patients: a machine learning and multi-variable modelling study. Phys Med Eur J Med Phys. 2018;45:192–7. https://doi.org/10.1016/j.ejmp.2017.10.008.

    Article  Google Scholar 

  54. Shiradkar R, Ghose S, Jambor I, Taimen P, Ettala O, Purysko AS, Madabhushi A. Radiomic features from pretreatment biparametric MRI predict prostate cancer biochemical recurrence: preliminary findings. J Magn Reson Imaging. 2018. https://doi.org/10.1002/jmri.26178 (Epub ahead of print).

    Article  PubMed  Google Scholar 

  55. Gabryś HS, Buettner F, Sterzing F, Hauswald H, Bangert M. Design and selection of machine learning methods using radiomics and dosiomics for normal tissue complication probability modeling of xerostomia. Front Oncol. 2018;5:8–35. https://doi.org/10.3389/fonc.2018.00035.

    Article  Google Scholar 

  56. Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J Stat Soft. 2011;39(5):1–13. https://doi.org/10.18637/jss.v039.i05.

    Article  Google Scholar 

  57. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.

    Article  Google Scholar 

  58. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S, Tang A. Deep learning: a primer for radiologists. Radiographics. 2017;37(7):2113–31.

    Article  Google Scholar 

  59. Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10(3):257–73.

    Article  Google Scholar 

  60. Meyer P, Noblet V, Mazzara C, Lallement A. Survey on deep learning for radiotherapy. Comput Biol Med. 2018;98:126–46.

    Article  Google Scholar 

  61. Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006.

    Google Scholar 

  62. Marcus G. Deep learning: a critical appraisal. 2018. arXiv:1801.00631v1.

  63. Qin Y, Yu X, Hou J, Hu Y, Li F, Wen L, Lu Q, Fu Y, Liu S. Predicting chemoradiotherapy response of nasopharyngeal carcinoma using texture features based on intravoxel incoherent motion diffusion-weighted imaging. Medicine (Baltimore). 2018;97(30):e11676. https://doi.org/10.1097/MD.0000000000011676.

    Article  Google Scholar 

  64. Wang G, He L, Yuan C, Huang Y, Liu Z, Liang C. Pretreatment MR imaging radiomics signatures for response prediction to induction chemotherapy in patients with nasopharyngeal carcinoma. Eur J Radiol. 2018;98:100–6.

    Article  Google Scholar 

  65. Cui Y, Yang X, Shi Z, Yang Z, Du X, Zhao Z, Cheng X. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Eur Radiol. 2018. https://doi.org/10.1007/s00330-018-5683-9.

    Article  PubMed  Google Scholar 

  66. Crispin-Ortuzar M, Apte A, Grkovski M, Oh JH, Lee NY, Schöder H, Humm JL, Deasy JO. Predicting hypoxia status using a combination of contrast-enhanced computed tomography and [18F]-Fluorodeoxyglucose positron emission tomography radiomics features. Radiother Oncol. 2018;127(1):36–42.

    Article  Google Scholar 

  67. Larue RTHM, Klaassen R, Jochems A, Leijenaar RTH, Hulshof MCCM, van Berge Henegouwen MI, Schreurs WMJ, Sosef MN, van Elmpt W, van Laarhoven HWM, Lambin P. Pre-treatment CT radiomics to predict 3-year overall survival following chemoradiotherapy of esophageal cancer. Acta Oncol. 2018;1:1–7. https://doi.org/10.1080/0284186X.2018.1486039 (Epub ahead of print).

    Article  Google Scholar 

  68. Hou Z, Li S, Ren W, Liu J, Yan J, Wan S. Radiomic analysis in T2W and SPAIR T2W MRI: predict treatment response to chemoradiotherapy in esophageal squamous cell carcinoma. J Thorac Dis. 2018;10(4):2256–67.

    Article  Google Scholar 

  69. Gangeh MJ, Hashim A, Giles A, Sannachi L, Czarnota GJ. Computer aided prognosis for cell death categorization and prediction in vivo using quantitative ultrasound and machine learning techniques. Med Phys. 2016;43(12):6439.

    Article  CAS  Google Scholar 

  70. Giannini V, Mazzetti S, Marmo A, Montemurro F, Regge D, Martincich L. A computer-aided diagnosis (CAD) scheme for pretreatment prediction of pathological response to neoadjuvant therapy using dynamic contrast-enhanced MRI texture features. Br J Radiol. 2017;90(1077):20170269. https://doi.org/10.1259/bjr.20170269.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kai C, Uchiyama Y, Shiraishi J, Fujita H, Doi K. Computer-aided diagnosis with radiogenomics: analysis of the relationship between genotype and morphological changes of the brain magnetic resonance images. Radiol Phys Technol. 2018. https://doi.org/10.1007/s12194-018-0462-5.

    Article  PubMed  Google Scholar 

  72. Pinker K, Chin J, Melsaether AN, Morris EA, Moy L. Precision medicine and radiogenomics in breast cancer: new approaches toward diagnosis and treatment. Radiology. 2018;287(3):732–47.

    Article  Google Scholar 

  73. El Naqa I. Biomedical informatics and panomics for evidence-based radiation therapy. Wiley Interdiscip Rev Data Min Knowl Discov. 2014;4:327–40.

    Article  Google Scholar 

  74. Peeken JC, Bernhofer M, Wiestler B, Goldberg T, Cremers D, Rost B, Wilkens JJ, Combs SE, Nüsslin F. Radiomics in radiooncology—challenging the medical physicist. Phys Med Eur J Med Phys. 2018;48:27–36.

    Google Scholar 

Download references

Acknowledgements

The researches described in this review paper were partially supported by the “Program for Supporting Educations and Researches on Mathematics and Data Science in Kyushu University”. The authors are grateful to all members of the Arimura laboratory (http://web.shs.kyushu-u.ac.jp/~arimura), whose comments made enormous contributions to the researches described in this review paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetaka Arimura.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Human rights

This article does not include studies using human subjects.

Animal rights

This article does not include others studies using animal models.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arimura, H., Soufi, M., Ninomiya, K. et al. Potentials of radiomics for cancer diagnosis and treatment in comparison with computer-aided diagnosis. Radiol Phys Technol 11, 365–374 (2018). https://doi.org/10.1007/s12194-018-0486-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-018-0486-x

Keywords