Abstract
The oscillation of liquid/gas free surface in a partially filled storage tank caused by an abrupt drop of gravity level is of critical importance for the fluid management in space. In the present study, the dynamic behavior of free surfaces in a model tank (tube) is numerically investigated using volume of fluid (VOF) method in the context of dynamic contact angle (DCA) model. It is concluded that the dynamic behavior of free surface could be captured pretty well using the selected DCA model, as shown by comparison with the results of Drop Tower Beijing experiment. The temporal evolution of free surface reproduces exactly the characteristics of damping oscillations. The detailed dynamic deflections of meniscus reveal crucial dependency between the oscillation frequency of free surface and the boundary condition in the contact line. The oscillation frequency increases when the range of the moving contact line transfers from the spherical-shaped part to the cylindrical part of the tank and maintains constant when the moving contact line remains always at the cylindrical part of the tank. Meanwhile, the oscillation amplitude decreases in line with the increase of oscillation frequency.
Similar content being viewed by others
References
Almohammadi, H., Amirfazli, A.: Droplet impact: viscosity and wettability effects on splashing. J. Colloid Interface Sci. 553, 22–30 (2019). https://doi.org/10.1016/j.jcis.2019.05.101
Barsi, S., Kassemi, M.: Investigation of tank pressurization and pressure control—part I: experimental study. Journal of Thermal Science and Engineering Applications. 5(4), 041005 (2013). https://doi.org/10.1115/1.4023891
Blake, T.D., Batts, G.N.: The temperature-dependence of the dynamic contact angle. J. Colloid Interface Sci. 553, 108–116 (2019). https://doi.org/10.1016/j.jcis.2019.06.006
Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J.comp.phys. 100(2), 335–354 (1992)
Chang, S., Ding, L., Song, M., Leng, M.: Numerical investigation on impingement dynamics and freezing performance of micrometer-sized water droplet on dry flat surface in supercooled environment. Int. J. Multiphase Flow. 118, 150–164 (2019). https://doi.org/10.1016/j.ijmultiphaseflow.2019.06.011
Chen, L., Liang, G.-Z.: Simulation research of vaporization and pressure variation in a cryogenic propellant tank at the launch site. Microgravity Science and Technology. 25(4), 203–211 (2013). https://doi.org/10.1007/s12217-013-9340-2
Cox, R.G.: The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169–194 (1986). https://doi.org/10.1017/S0022112086000332
Dalmon, A., Lepilliez, M., Tanguy, S., Alis, R., Popescu, E.R., Roumiguié, R., Miquel, T., Busset, B., Bavestrello, H., Mignot, J.: Comparison between the FLUIDICS experiment and direct numerical simulations of fluid sloshing in spherical tanks under microgravity conditions. Microgravity Science and Technology. 31(1), 123–138 (2019). https://doi.org/10.1007/s12217-019-9675-4
Dalmon, A., Lepilliez, M., Tanguy, S., Pedrono, A., Busset, B., Bavestrello, H., Mignot, J.: Direct numerical simulation of a bubble motion in a spherical tank under external forces and microgravity conditions. J. Fluid Mech. 849, 467–497 (2018). https://doi.org/10.1017/jfm.2018.389
Deng, M.L., Yue, B.Z.: Attitude tracking control of flexible spacecraft with large amplitude slosh. Acta Mech. Sinica. 33(6), 1095–1102 (2017). https://doi.org/10.1007/s10409-017-0700-9
Fernandez, J., Sanchez, P.S., Tinao, I., Porter, J., Ezquerro, J.M.: The CFVib experiment: control of fluids in microgravity with vibrations. Microgravity Science and Technology. 29(5), 351–364 (2017). https://doi.org/10.1007/s12217-017-9556-7
Fricke, M., Koehne, M., Bothe, D.: A kinematic evolution equation for the dynamic contact angle and some consequences. Physica D-Nonlinear Phenomena. 394, 26–43 (2019). https://doi.org/10.1016/j.physd.2019.01.008
Fries, N., Dreyer, M.: An analytic solution of capillary rise restrained by gravity. J. Colloid Interface Sci. 320(1), 259–263 (2008). https://doi.org/10.1016/j.jcis.2008.01.009
Gueyffier, D., Li, J., Nadim, A., Scardovelli, R., Zaleski, S.: Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J. Comput. Phys. 152(2), 423–456 (1999)
Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)
Ho, S., Rahman, M.: Three-dimensional analysis of liquid hydrogen cryogenic storage tank. Paper presented at the 3rd International Energy Conversion Engineering Conference, AIAA 2005–5712 (2005). https://doi.org/10.2514/6.2005-5712
Hoffman, R.L.: A study of the advancing interface. I. Interface shape in liquid—gas systems. Journal of Colloid & Interface Science. 50(2), 228–241 (1975)
Jiang, T.S., Soo-Gun, O.H., Slattery, J.C.: Correlation for dynamic contact angle. Journal of Colloid & Interface Science. 69(1), 74–77 (1979)
Josserand, C., Thoroddsen, S.T.: Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48(1), 365–391 (2016). https://doi.org/10.1146/annurev-fluid-122414-034401
Kassemi, M., Kartuzova, O.: Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank. Cryogenics. 74, 138–153 (2016). https://doi.org/10.1016/j.cryogenics.2015.10.018
Kistler, S.F.: Hydrodynamics of wetting. in Wettability, edited by J. C. Berg (Marcel Dekker, New York, 1993), p.311 (1993)
Kulev, N., Dreyer, M.: Drop tower experiments on non-isothermal reorientation of cryogenic liquids. Microgravity Science and Technology. 22(4), 463–474 (2010). https://doi.org/10.1007/s12217-010-9237-2
Kumar, S.P., Prasad, B.V.S.S.S., Venkatarathnam, G., Ramamurthi, K., Murthy, S.S.: Influence of surface evaporation on stratification in liquid hydrogen tanks of different aspect ratios. Int. J. Hydrog. Energy. 32(12), 1954–1960 (2007). https://doi.org/10.1016/j.ijhydene.2006.08.052
Li, J.C., Lin, H., Zhao, J.F., Li, K., Hu, W.R.: Dynamic behaviors of liquid in partially filled tank in short-term microgravity. Microgravity Science and Technology. 30(6), 849–856 (2018). https://doi.org/10.1007/s12217-018-9642-5
Li, Y.Q., Cao, W.H., Liu, L.: Numerical simulation of capillary flow in fan-shaped asymmetric interior corner under microgravity. Microgravity Science and Technology. 29, 65–79 (2017). https://doi.org/10.1007/s12217-016-9526-5
Liang, G., Mudawar, I.: Review of drop impact on heated walls. Int. J. Heat Mass Transf. 106, 103–126 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.031
Lopez, A., Grayson, G., Chandler, F., Hastings, L., Hedayat, A.: Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks. Paper presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2007)
Lopez, A., Grayson, G., Chandler, F., Hastings, L., Hedayat, A.: Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks in Reduced Gravity. Paper presented at the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2008)
Park, J., Im, S., Sung, H.J., Park, J.S.: PIV measurements of flow around an arbitrarily moving free surface. Exp. Fluids. 56(3), 56 (2015). https://doi.org/10.1007/s00348-015-1920-z
Quetzeri-Santiago, M.A., Castrejon-Pita, A.A., Castrejon-Pita, J.R.: The effect of surface roughness on the contact line and splashing dynamics of impacting droplets. Sci. Rep. 9(1), 15030 (2019). https://doi.org/10.1038/s41598-019-51490-5
Salgado Sanchez, P., Fernandez, J., Tinao, I., Porter, J.: Vibroequilibria in microgravity: comparison of experiments and theory. Phys. Rev. E. 100, 063103 (2019). https://doi.org/10.1103/PhysRevE.100.063103
Snoeijer, J.H., Andreotti, B.: Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45(1), 269–292 (2013). https://doi.org/10.1146/annurev-fluid-011212-140734
Stange, M., Dreyer, M.E., Rath, H.J.: Capillary driven flow in circular cylindrical tubes. Phys. Fluids. 15(9), 2587–2601 (2003). https://doi.org/10.1063/1.1596913
Sui, Y., Ding, H., Spelt, P.D.M.: Numerical simulations of flows with moving contact lines. Annu. Rev. Fluid Mech. 46(1), 97–119 (2014). https://doi.org/10.1146/annurev-fluid-010313-141338
Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994). https://doi.org/10.1006/jcph.1994.1155
Utsumi, M.: Slosh damping caused by friction work due to contact angle hysteresis. AIAA J. 55(1), 265–273 (2017). https://doi.org/10.2514/1.j055238
Viola, F., Brun, P.T., Gallaire, F.: Capillary hysteresis in sloshing dynamics: aweakly nonlinear analysis. J. Fluid Mech. 837, 788–818 (2018). https://doi.org/10.1017/jfm.2017.860
Vreeburg, J.P.B.: Simulation of liquid dynamics onboard Sloshsat FLEVO. AIP Conference Proceedings. 458, 836 (1999). https://doi.org/10.1063/1.57704
Wang, X., Zhou, B., Jiang, M.: Technical challenges in numerical simulation of droplet behaviors with dynamic contact angle in microchannels. Int. J. Energy Res. 43(9), 4828–4839 (2019). https://doi.org/10.1002/er.4633
Yang, W.J., Zhang, T.T., Li, C., Li, S.M., Xu, X.H.: Numerical Simulation of Pitching Sloshing under Microgravity. J. Appl. Fluid Mech. 12(5), 1527–1537 (2019). https://doi.org/10.29252/jafm.12.05.29677
Youngs, D.L.: Time-Dependent Multi-material Flow with Large Fluid Distortion. Academic Press, pp.273–285 (1982)
Zhou, X., Liu, Z., Huai, X.: Evolution of free surface in the formation of thermo-Solutocapillary convection within an open cavity. Microgravity Science and Technology. 28(4), 421–430 (2016). https://doi.org/10.1007/s12217-016-9492-y
Zhou, Z., Huang, H.: Constraint surface model for large amplitude sloshing of the spacecraft with multiple tanks. Acta Astronaut. 111, 222–229 (2015)
Zwicke, F., Eusterholz, S., Elgeti, S.: Boundary-conforming free-surface flow computations: Interface tracking for linear, higher-order and isogeometric finite elements. Comput. Methods Appl. Mech. Eng. 326, 175–192 (2017). https://doi.org/10.1016/j.cma.2017.08.022
Acknowledgments
This research is supported by the National Nature Science Foundation of China (Gant No. 11672311), the Strategic Project of Leading Science and Technology (Class A), CAS (Grant No. XDA15012700) and the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDY-SSW-JSC040).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article belongs to the Topical Collection: The Effect of Gravity on Physical and Biological Phenomena
Guest Editor: Valentina Shevtsova
Rights and permissions
About this article
Cite this article
Li, JC., Lin, H., Li, K. et al. Dynamic Behavior in a Storage Tank in Reduced Gravity Using Dynamic Contact Angle Method. Microgravity Sci. Technol. 32, 1039–1048 (2020). https://doi.org/10.1007/s12217-020-09831-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12217-020-09831-x