Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Predicting body mass index and isometric leg strength using soft tissue distributions from computed tomography scans

  • Original Paper
  • Published:
Health and Technology Aims and scope Submit manuscript

Abstract

This paper describes the interconnections and predictive value between Body Mass Index (BMI), Isometric Leg Strength (ISO) and soft tissue distribution from mid-thigh Computed Tomography (CT) scans using Machine Learning (ML) regression and classification algorithms. A novel methodology for soft tissue patient specific CT profile called Nonlinear Trimodal Regression Analysis (NTRA) was developed using radiodensitomentric distribution from a CT scan. This method defines 11 parameters used as input features for Tree-Based ML algorithms in order to apply regression and classification on BMI and ISO. K_fold Cross-Validation with k = 10 is applied to obtain several models to choose the best one using the higher coefficient of determination (R2) as an evaluator of the quality of regression prediction. Following this, BMI and ISO are divided into 3 and 5 classes and the same methodology is used to classify them. For this analysis, an accuracy parameter is calculated to evaluate the quality of the results. The max R2 is 88.9 for the BMI and it is obtained using the Gradient-Boosting Algorithm. The best accuracy was 76.1 for 3 classes and 73.1 for 5 classes. The best results obtained for ISO are R2 = 66.5 and an accuracy of 65.5 for the 3 classes classification. Furthermore, the connective tissue assumes high importance in the prediction process. In this methodological study the feasibility of a ML approach was tested with good results, in order to show a novel approach to study the correlation between physiology parameters and imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Metter EJ, Talbot LA, Schrager M, Conwit R. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol A Biol Sci Med Sci. 2002;57(10):B359–65.

    Article  Google Scholar 

  2. Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, et al. Attenuation of skeletal muscle and strength in the elderly: the health ABC study. J Appl Physiol (Bethesda MD: 1985). 2001;90(6):2157–65.

    Article  Google Scholar 

  3. Fanò-Illic G. Are deferrable the mobility impairments in older aging? Eur J Transl Myol-Basic Appl Myol. 2016;26(1):25–8.

    Article  Google Scholar 

  4. Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. Int Working Group Sarcopenia J Am Med Direct Assoc. 2011;12(4):249–56.

    Article  Google Scholar 

  5. Jiang F, Jiang Y, Zhi H. Artificial intelligence in healthcare: past, present and future, Stroke Vasc Neurol. 2017.

  6. Holzinger A. Machine Learning for Health Informatics, LNAI 9605, pp.1–24, 2016. doi: https://doi.org/10.1007/978-3-319-50478-0_1

  7. Improta G, Ricciardi C, Amato F, D’Addio G, Cesarelli M, Romano M. Efficacy of Machine Learning in Predicting the Kind of Delivery by Cardiotocography. In: Henriques J, Neves N, de Carvalho P, editors. XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE proceedings, vol. 76. Cham: Springer; 2020. https://doi.org/10.1007/978-3-030-31635-8_95.

    Chapter  Google Scholar 

  8. D’Addio G, Ricciardi C, Improta G, Bifulco P, Cesarelli M. Feasibility of Machine Learning in Predicting Features Related to Congenital Nystagmus. In: Henriques J, Neves N, de Carvalho P, editors. XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE proceedings, vol. 76. Cham: Springer; 2020. https://doi.org/10.1007/978-3-030-31635-8_110.

    Chapter  Google Scholar 

  9. Stanzione A, Ricciardi C, Cuocolo R, Romeo V, Petrone J, Sarnataro M, et al. MRI Radiomics for the prediction of Fuhrman grade in clear cell renal cell carcinoma: a machine learning exploratory study. J Digit Imaging. 2020;33:879–87. https://doi.org/10.1007/s10278-020-00336-y.

    Article  Google Scholar 

  10. Romeo V, Cuocolo R, Ricciardi C, Ugga L, Cocozza S, Verde F, et al. Prediction of tumor grade and nodal status in oropharyngeal and oral cavity squamous-cell carcinoma using a radiomic approach. Anticancer Res. 2020;40(1):271–80. https://doi.org/10.21873/anticanres.13949.

    Article  Google Scholar 

  11. Ricciardi C, et al. Distinguishing Functional from Non-functional Pituitary Macroadenomas with a Machine Learning Analysis. In: Henriques J, Neves N, de Carvalho P, editors. XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE proceedings, vol. 76. Cham: Springer; 2020. https://doi.org/10.1007/978-3-030-31635-8_221.

  12. Ker J, Wang L, Rao J, Lim T. Deep learning applications in medical image analysis. Ieee Access. 2017;6:9375–89.

    Article  Google Scholar 

  13. Oikonomou EK, Williams MC, Kotanidis CP, Desai MY, Marwan M, Antonopoulos AS, et al. A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography. Eur Heart J. 2019;40(43):3529–43.

    Article  Google Scholar 

  14. Harris TB, Launer LJ, Eiriksdottir G, Kjartansson O, Jonsson PV, Sigurdsson G, et al. Age, Gene/Environment Susceptibility– Reykjavik Study: Multidisciplinary Applied Phenomics. Am J Epidemiol. 2007;165(9):1076–87. https://doi.org/10.1093/aje/kwk115 PMID: 17351290.

    Article  Google Scholar 

  15. Johannesdottir F, Aspelund T, Siggeirsdottir K, Jonsson B, Mogensen B, Sigurdsson S, et al. Mid-thigh cortical bone structural parameters, muscle mass and strength, and association with lower limb fractures in older men and women (AGES-Reykjavik study). Calcif Tissue Int. 2012;905:354–64.

    Article  Google Scholar 

  16. Edmunds KJ, Gislason M, Sigurðsson S, Guðnason V, Harris TB, Carraro U, et al. Advanced quantitative methods in correlating sarcopenic muscle degeneration with lower extremity function biometrics and comorbidities. PLoS One. 2018;13(3):e0193241. https://doi.org/10.1371/journal.pone.0193241.

    Article  Google Scholar 

  17. Edmunds KJ, Arnadottir I, Gislason M, Carraro U, Gargiulo P. Nonlinear Trimodal Regression Analysis of Radiodensitometric Distributions to Quantify Sarcopenic and Sequelae Muscle Degeneration. Comput Math Methods Med. 2016; 8932950. https://doi.org/10.1155/2016/8932950

  18. Recenti M, Ricciardi C, Gìslason M, Edmunds K, Carraro U, Gargiulo P. Machine learning algorithms predict body mass index using nonlinear trimodal regression analysis from computed tomography scans. In: Mediterranean Conference on Medical and Biological Engineering and Computing. Cham: Springer; 2019. p. 839–46. https://doi.org/10.1007/978-3-030-31635-8_100.

    Chapter  Google Scholar 

  19. Recenti M, Ricciardi C, Edmunds K, Gislason MK, Gargiulo P. Machine learning predictive system based upon radiodensitometric distributions from mid-thigh CT images. Eur J Transl Myol. 2020;30(1):8892. https://doi.org/10.4081/ejtm.2019.8892.

    Article  Google Scholar 

  20. Lang T, Cauley JA, Tylavsky F, Bauer D, Cummings S, Harris TB. Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J Bone Miner Res. 2010;25(3):513–9.

    Article  Google Scholar 

  21. Breiman L, Friedman J, Olshen R, Stone C. Classification and regression trees. Belmont: Wadsworth; 1984.

    MATH  Google Scholar 

  22. Ho TK. Random Decision Forests. Montreal: Proceedings of the 3rd International Conference on Document Analysis and Recognition; 1995. p. 278–82.

    Google Scholar 

  23. Ho TK. The Random Subspace Method for Constructing Decision Forests. IEEE Trans Pattern Anal Mach Intell. 1998; 20(8).

  24. Guerts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006;63:3–42. https://doi.org/10.1007/s10994-006-6226-1.

    Article  MATH  Google Scholar 

  25. Freund Y, Shapire RE. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J Comput Syst Sci. 1997;55:119–39 Article no SS971504.

    Article  MathSciNet  Google Scholar 

  26. Drucker H. Improving Regressors using boosting techniques. ICML 1997. 1997.

  27. Friedman JH. Greedy function approximation: a gradient-boosting machine, technical report, Dept. Of Statistics, Standford University; 1999.

  28. Friedman J.H., Stochastic gradient-boosting, Comput Stat Data Anal, Vol 38, Issue 4, 2002, Pages 367–378,https://doi.org/10.1016/S0167-9473(01)00065-2.

    Article  MathSciNet  MATH  Google Scholar 

  29. Pedregosa F, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12(Oct):2825–30.

    MathSciNet  MATH  Google Scholar 

  30. Willmott CJ, Matsuura K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res. 2005;30:79–82. https://doi.org/10.3354/cr030079.

    Article  Google Scholar 

  31. Hossin M, Sulaiman MN. A review on evaluation metrics for data classification evaluations. Int J Data Min Knowledge Manag Process. 2015;5(2):1.

    Article  Google Scholar 

  32. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Ijcai. 1995;14(2):1137–45.

    Google Scholar 

  33. Recenti M, Ricciardi C, Aubonnet R, Esposito L, Jónsson H, Gargiulo P. A regression approach to assess bone mineral density of patients undergoing Total hip Arthroplasty through gait analysis. In: 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA) (pp. 1-6). IEEE. 2020 doi: https://doi.org/10.1109/MeMeA49120.2020.9137182.

  34. Lin G, Nagamine M, Yang S, Tai Y, Lin C, Sato H. Machine learning based suicide ideation prediction for military personnel. IEEE J Biomed Health Informatics. 2020;24(7):1907–16. https://doi.org/10.1109/JBHI.2020.2988393.

    Article  Google Scholar 

  35. Improta G, Ricciardi C, Cesarelli G, D’Addio G, Bifulco P, Cesarelli M. Machine learning models for the prediction of acuity and variability of eye-positioning using features extracted from oculography. Health Technol. 2020;10:961–8. https://doi.org/10.1007/s12553-020-00449-y.

    Article  Google Scholar 

  36. Ricciardi C, Cantoni V, Green R, Improta G, Cesarelli M. Is It Possible to Predict Cardiac Death? In: Henriques J, Neves N, de Carvalho P, editors. XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE proceedings, vol. 76. Cham: Springer; 2020. https://doi.org/10.1007/978-3-030-31635-8_101.

    Chapter  Google Scholar 

  37. Ricciardi C, Cantoni V, Improta G, Iuppariello L, Latessa I, Cesarelli M, et al. Application of data mining in a cohort of Italian subjects undergoing myocardial perfusion imaging at an academic medical center. Comput Methods Prog Biomed. 2020;189:105343. https://doi.org/10.1016/j.cmpb.2020.105343.

    Article  Google Scholar 

  38. Ricciardi C, Valente AS, Edmund K, Cantoni V, Green R, Fiorillo A, et al. Linear discriminant analysis and principal component analysis to predict coronary artery disease. Health Informatics J. 2020;26(3):2181–92. https://doi.org/10.1177/1460458219899210.

    Article  Google Scholar 

  39. Ricciardi C, Edmunds KJ, Recenti M, Sigurdsson S, Gudnason V, Carraro U, et al. Assessing cardiovascular risks from a mid-thigh CT image: a tree-based machine learning approach using radiodensitometric distributions. Sci Rep. 2020;10:2863. https://doi.org/10.1038/s41598-020-59873-9.

    Article  Google Scholar 

Download references

Acknowledgments

We want to thank all the staff and the participants of the AGES-Reykjavik study for their important contribution: The Age, Gene/Environment Susceptibility Reykjavik Study has been funded by NIH contract N01-AG12100, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Recenti.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 4 The accuracy results for the classification of BMI and ISO for both AGES I and AGES II
Table 5 The evaluation metrics for the BMI classification for AGES I
Table 6 The evaluation metrics for the BMI classification for AGES II
Table 7 The evaluation metrics for the ISO classification for AGES I
Table 8 The evaluation metrics for the ISO classification for AGES II

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Recenti, M., Ricciardi, C., Monet, A. et al. Predicting body mass index and isometric leg strength using soft tissue distributions from computed tomography scans. Health Technol. 11, 239–249 (2021). https://doi.org/10.1007/s12553-020-00498-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12553-020-00498-3

Keywords