Abstract
In this short paper we prove that, in the framework of continuous control problems for piecewise deterministic Markov processes, the existence of a uniform limit for discounted value functions as the discount factor vanishes implies (without any further assumption) the uniform convergence of the value functions with long run average cost as the time horizon increases to infinity. The two limit values coincide. We also provide a converse Tauberian result for a particular class of systems with Poisson-triggered jump mechanism. We exhibit a very simple example in which the dynamics are not dissipative, nevertheless discounted values converge uniformly to a non-constant limit function.
Similar content being viewed by others
References
Almudevar, A.: A dynamic programming algorithm for the optimal control of piecewise deterministic Markov processes. SIAM J. Control Optim. 40(2), 525–539 (2001)
Arisawa, M.: Ergodic problem for the Hamilton–Jacobi–Bellman equation, II. Annales de l’Institut Henri Poincare (C) Non Linear Anal. 15(1), 1–24 (1998)
Barles, G., Jakobsen, E.R.: On the convergence rate of approximation schemes for Hamilton–Jacobi–Bellman equations. ESAIM Math. Model. Numer. Anal. 36(1), 251–274 (2002)
Benaïm, M., Le Borgne, S., Malrieu, F., Zitt, P.-A.: Quantitative ergodicity for some switched dynamical systems. Electron. Commun. Probab. 17(56), 1–14 (2012)
Buckdahn, R., Goreac, D., Quincampoix, M.: Existence of asymptotic values for nonexpansive stochastic control systems. Appl. Math. Optim. 70(1), 1–28 (2014)
Costa, O.: Average impulse control of piecewise deterministic processes. IMA J. Math. Control Inf. 6(4), 375–397 (1989)
Costa, O.L.V., Dufour, F.: The vanishing discount approach for the average continuous control of piecewise deterministic Markov processes. J. Appl. Probab. 46(4), 1157–1183 (2009)
Costa, O.L.V., Dufour, F.: Average continuous control of piecewise deterministic Markov processes. SIAM J. Control Optim. 48(7), 4262–4291 (2010)
Davis, M.H.A.: Piecewise-deterministic Markov-processes—a general-class of non-diffusion stochastic-models. J. R. Stat. Soc. Ser. B Methodol. 46(3), 353–388 (1984)
Davis, M.H.A.: Control of piecewise-deterministic processes via discrete-time dynamic-programming. Lect. Notes Control Inf. Sci. 78, 140–150 (1986)
Davis, M.H.A.: Markov Models and Optimization. Monographs on Statistics and Applied Probability, vol. 49. Chapman & Hall, London (1993)
Dempster, M.A.H., Ye, J.J.: Generalized Bellman–Hamilton–Jacobi optimality conditions for a control problem with a boundary condition. Appl. Math. Optim. 33(3), 211–225 (1996)
Feller, W.: An Introduction to Probability Theory and its Applications, vol. II, 2nd edn. Wiley, New York (1971)
Forwick, L., Schal, M., Schmitz, M.: Piecewise deterministic Markov control processes with feedback controls and unbounded costs. Acta Appl. Math. 82(3), 239–267 (2004)
Gatarek, D.: Optimality conditions for impulsive control of piecewise-deterministic processes. Math. Control Signal Syst. 5(2), 217–232 (1992)
Goreac, D.: Viability, Invariance and reachability for controlled piecewise deterministic Markov processes associated to gene networks. ESAIM-Control Optim. Calc. Var. 18(2), 401–426 (2012)
Goreac, D., Serea, O.-S.: Mayer and optimal stopping stochastic control problems with discontinuous cost. J. Math. Anal. Appl. 380(1), 327–342 (2011)
Goreac, D., Serea, O.-S.: Linearization techniques for controlled piecewise deterministic Markov processes; application to Zubov’s method. Appl. Math. Optim. 66, 209–238 (2012). doi:10.1007/s00245-012-9169-x
Goreac, D., Serea, O.-S.: Linearization techniques for controlled piecewise deterministic Markov processes; application to Zubov’s method. Appl. Math. Optim. 66, 209–238 (2012)
Hardy, G.H., Littlewood, J.E.: Tauberian theorems concerning power series and Dirichlet’s series whose coefficients are positive. Proc. Lond. Math. Soc. s2–13(1), 174–191 (1914)
Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland Mathematical Library, vol. 24. North-Holland Publishing Co./Kodansha Ltd, Amsterdam/New York (1981)
Jacobsen, M.: Point Process Theory and Applications. Marked Point and Piecewise Deterministic Processes. Birkhäuser Verlag GmbH, London (2006)
Krylov, N.V.: On the rate of convergence of finite-difference approximations for Bellman’s equations with variable coefficients. Probab. Theory Relat. Fields 117(1), 1–16 (2000)
Li, X., Quincampoix, M., Renault, J.: Generalized limit value in optimal control. Technical report (2014)
Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions, 2nd edn. Universitext, Springer, Berlin (2007)
Oliu-Barton, M., Vigeral, G.: A uniform Tauberian theorem in optimal control. In: Cardaliaguet, P., Cressman, R. (eds.) Annals of the International Society of Dynamic Games vol 12: Advances in Dynamic Games. Birkhäuser, Boston (2013)
Pham, Huyên: Optimal stopping of controlled jump diffusion processes: a viscosity solution approach. J. Math. Syst. Estim. Control 8(1), 27 (1998). (electronic)
Quincampoix, M., Renault, J.: On the existence of a limit value in some nonexpansive optimal control problems. SIAM J. Control Optim. 49(5), 2118–2132 (2011)
Renault, Jérôme: General limit value in dynamic programming. J. Dyn. Games 1(3), 471–484 (2014)
Soner, H.M.: Optimal control with state-space constraint, II. SIAM J. Control Optim. 24(6), 1110–1122 (1986)
Acknowledgments
The work of the first author has been partially supported by the French National Research Agency ANR PIECE ANR-12-JS01-0006.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Goreac, D., Serea, OS. Abel-type Results for Controlled Piecewise Deterministic Markov Processes. Differ Equ Dyn Syst 25, 83–100 (2017). https://doi.org/10.1007/s12591-015-0245-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12591-015-0245-y
Keywords
- Piecewise deterministic Markov processes
- Long run average
- Abelian/Tauberian theorem
- Optimal control
- Viscosity solutions