Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abel-type Results for Controlled Piecewise Deterministic Markov Processes

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this short paper we prove that, in the framework of continuous control problems for piecewise deterministic Markov processes, the existence of a uniform limit for discounted value functions as the discount factor vanishes implies (without any further assumption) the uniform convergence of the value functions with long run average cost as the time horizon increases to infinity. The two limit values coincide. We also provide a converse Tauberian result for a particular class of systems with Poisson-triggered jump mechanism. We exhibit a very simple example in which the dynamics are not dissipative, nevertheless discounted values converge uniformly to a non-constant limit function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almudevar, A.: A dynamic programming algorithm for the optimal control of piecewise deterministic Markov processes. SIAM J. Control Optim. 40(2), 525–539 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arisawa, M.: Ergodic problem for the Hamilton–Jacobi–Bellman equation, II. Annales de l’Institut Henri Poincare (C) Non Linear Anal. 15(1), 1–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barles, G., Jakobsen, E.R.: On the convergence rate of approximation schemes for Hamilton–Jacobi–Bellman equations. ESAIM Math. Model. Numer. Anal. 36(1), 251–274 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benaïm, M., Le Borgne, S., Malrieu, F., Zitt, P.-A.: Quantitative ergodicity for some switched dynamical systems. Electron. Commun. Probab. 17(56), 1–14 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Buckdahn, R., Goreac, D., Quincampoix, M.: Existence of asymptotic values for nonexpansive stochastic control systems. Appl. Math. Optim. 70(1), 1–28 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Costa, O.: Average impulse control of piecewise deterministic processes. IMA J. Math. Control Inf. 6(4), 375–397 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Costa, O.L.V., Dufour, F.: The vanishing discount approach for the average continuous control of piecewise deterministic Markov processes. J. Appl. Probab. 46(4), 1157–1183 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Costa, O.L.V., Dufour, F.: Average continuous control of piecewise deterministic Markov processes. SIAM J. Control Optim. 48(7), 4262–4291 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Davis, M.H.A.: Piecewise-deterministic Markov-processes—a general-class of non-diffusion stochastic-models. J. R. Stat. Soc. Ser. B Methodol. 46(3), 353–388 (1984)

    MATH  Google Scholar 

  10. Davis, M.H.A.: Control of piecewise-deterministic processes via discrete-time dynamic-programming. Lect. Notes Control Inf. Sci. 78, 140–150 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davis, M.H.A.: Markov Models and Optimization. Monographs on Statistics and Applied Probability, vol. 49. Chapman & Hall, London (1993)

    Book  MATH  Google Scholar 

  12. Dempster, M.A.H., Ye, J.J.: Generalized Bellman–Hamilton–Jacobi optimality conditions for a control problem with a boundary condition. Appl. Math. Optim. 33(3), 211–225 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feller, W.: An Introduction to Probability Theory and its Applications, vol. II, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  14. Forwick, L., Schal, M., Schmitz, M.: Piecewise deterministic Markov control processes with feedback controls and unbounded costs. Acta Appl. Math. 82(3), 239–267 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gatarek, D.: Optimality conditions for impulsive control of piecewise-deterministic processes. Math. Control Signal Syst. 5(2), 217–232 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Goreac, D.: Viability, Invariance and reachability for controlled piecewise deterministic Markov processes associated to gene networks. ESAIM-Control Optim. Calc. Var. 18(2), 401–426 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goreac, D., Serea, O.-S.: Mayer and optimal stopping stochastic control problems with discontinuous cost. J. Math. Anal. Appl. 380(1), 327–342 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goreac, D., Serea, O.-S.: Linearization techniques for controlled piecewise deterministic Markov processes; application to Zubov’s method. Appl. Math. Optim. 66, 209–238 (2012). doi:10.1007/s00245-012-9169-x

    Article  MathSciNet  MATH  Google Scholar 

  19. Goreac, D., Serea, O.-S.: Linearization techniques for controlled piecewise deterministic Markov processes; application to Zubov’s method. Appl. Math. Optim. 66, 209–238 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hardy, G.H., Littlewood, J.E.: Tauberian theorems concerning power series and Dirichlet’s series whose coefficients are positive. Proc. Lond. Math. Soc. s2–13(1), 174–191 (1914)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland Mathematical Library, vol. 24. North-Holland Publishing Co./Kodansha Ltd, Amsterdam/New York (1981)

    Book  MATH  Google Scholar 

  22. Jacobsen, M.: Point Process Theory and Applications. Marked Point and Piecewise Deterministic Processes. Birkhäuser Verlag GmbH, London (2006)

    MATH  Google Scholar 

  23. Krylov, N.V.: On the rate of convergence of finite-difference approximations for Bellman’s equations with variable coefficients. Probab. Theory Relat. Fields 117(1), 1–16 (2000)

    Article  MATH  Google Scholar 

  24. Li, X., Quincampoix, M., Renault, J.: Generalized limit value in optimal control. Technical report (2014)

  25. Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions, 2nd edn. Universitext, Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  26. Oliu-Barton, M., Vigeral, G.: A uniform Tauberian theorem in optimal control. In: Cardaliaguet, P., Cressman, R. (eds.) Annals of the International Society of Dynamic Games vol 12: Advances in Dynamic Games. Birkhäuser, Boston (2013)

    Google Scholar 

  27. Pham, Huyên: Optimal stopping of controlled jump diffusion processes: a viscosity solution approach. J. Math. Syst. Estim. Control 8(1), 27 (1998). (electronic)

    MathSciNet  Google Scholar 

  28. Quincampoix, M., Renault, J.: On the existence of a limit value in some nonexpansive optimal control problems. SIAM J. Control Optim. 49(5), 2118–2132 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Renault, Jérôme: General limit value in dynamic programming. J. Dyn. Games 1(3), 471–484 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Soner, H.M.: Optimal control with state-space constraint, II. SIAM J. Control Optim. 24(6), 1110–1122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work of the first author has been partially supported by the French National Research Agency ANR PIECE ANR-12-JS01-0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oana-Silvia Serea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goreac, D., Serea, OS. Abel-type Results for Controlled Piecewise Deterministic Markov Processes. Differ Equ Dyn Syst 25, 83–100 (2017). https://doi.org/10.1007/s12591-015-0245-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-015-0245-y

Keywords

Mathematics Subject Classification