Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Duality for nondifferentiable minimax fractional programming problem involving higher order \((\varvec{C},\varvec{\alpha}, \varvec{\rho}, \varvec{d})\)-convexity

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

In this paper, we present new class of higher-order \((C, \alpha , \rho , d)\)-convexity and formulate two types of higher-order duality for a nondifferentiable minimax fractional programming problem. Based on the higher-order \((C, \alpha , \rho , d)\)-convexity, we establish appropriate higher-order duality results. These results extend several known results to a wider class of programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahmad, I.: Second order nondifferentiable minimax fractional programming with square root terms. Filomat 27, 126–133 (2013)

    Google Scholar 

  2. Ahmad, I.: Higher-order duality in nondifferentiable minimax fractional programming involving generalized convexity. J. Inequal. Appl. 2012, 306 (2012)

    Article  Google Scholar 

  3. Ahmad, I., Husain, Z.: Duality in nondifferentiable minimax fractional programming with generalized convexity. Appl. Math. Comput. 176, 545–551 (2006)

    Google Scholar 

  4. Ahmad, I., Gupta, S.K., Kailey, N., Agarwal, R.P.: Duality in nondifferentiable minimax fractional programming with \(B-(p, r)\)-invexity. J. Inequal. Appl. 2011, 75 (2011)

    Article  Google Scholar 

  5. Dangar, D., Gupta, S.K.: On second-order duality for a class of nondifferentiable minimax fractional programming problem with \((C, \alpha, \rho, d)\)-convexity. J. Appl. Math. Comput. 43, 11–30 (2013)

    Article  Google Scholar 

  6. Gao, Y.: Higher-order symmetric duality in multiobjective programming problems. Acta Math. Appl. Sin. Engl. Ser. 32, 485–494 (2016)

    Article  Google Scholar 

  7. Gulati, T.R., Gupta, S.K.: Higher-order nondifferentiable symmetric duality with generalized \(F\)-convexity. J. Math. Anal. Appl. 329, 229–237 (2007)

    Article  Google Scholar 

  8. Gupta, S.K., Dangar, D., Kumar, S.: Second-order duality for a nondifferentiable minimax fractional programming under generalized \(\alpha\)-univexity. J. Inequal. Appl. 2012, 187 (2012)

    Article  Google Scholar 

  9. Gupta, S.K., Dangar, D.: On second-order duality for nondifferentiable minimax fractional programming. J. Comput. Appl. Math. 255, 878–886 (2014)

    Article  Google Scholar 

  10. Hanson, M.A., Mond, B.: Further generalizations of convexity in mathematical programming. J. Inf. Optim. Sci. 3, 25–32 (1986)

    Google Scholar 

  11. Jayswal, A.: Optimality and duality for nondifferentiable minimax fractional programming with generalized convexity. ISRN Appl. Math. 2011, 19 (2011)

    Article  Google Scholar 

  12. Jayswal, A., Kumar, D.: On nondifferentiable minimax fractional programming involving generalized \((C, \alpha, \rho, d)\)-Convexity. Commun. Appl. Nonlinear Anal. 18, 61–77 (2011)

    Google Scholar 

  13. Jayswal, A., Stancu-Minasian, I.M., Kumar, D.: Higher-order duality for multiobjective programming problems involving \((F, \alpha, \rho, d)\)-V-type I functions. J. Math. Model. Algorithm 13, 125–141 (2014)

    Article  Google Scholar 

  14. Kailey, N., Sharma, V.: On second order duality of minimax fractional programming with square root term involving generalized \(B-(p, r)\)-invex functions. Ann. Oper. Res. (2016). doi:10.1007/s10479-016-2147-y

    Google Scholar 

  15. Lai, H.C., Lee, J.C.: On duality theorems for a nondifferentiable minimax fractional programming. J. Comput. Appl. Math. 146, 115–126 (2002)

    Article  Google Scholar 

  16. Lai, H.C., Liu, J.C., Tanaka, K.: Necessary and sufficient conditions for minimax fractional programming. J. Math. Anal. Appl. 230, 311–328 (1999)

    Article  Google Scholar 

  17. Liang, Z.A., Huang, H.X., Pardalos, P.M.: Optimality conditions and duality for a class of nonlinear fractional programming problems. J. Optim. Theory Appl. 110, 611–619 (2001)

    Article  Google Scholar 

  18. Preda, V.: On efficiency and duality for multiobjective programs. J. Math. Anal. Appl. 166, 365–377 (1992)

    Article  Google Scholar 

  19. Vial, J.P.: Strong and weak convexity of sets and functions. Math. Oper. Res. 8, 231–259 (1983)

    Article  Google Scholar 

  20. Ying, G.: Higher-order symmetric duality for a class of multiobjective fractional programming problems. J. Inequal. Appl 2012, 142 (2012)

    Article  Google Scholar 

  21. Yuan, D.H., Liu, X.L., Chinchuluun, A., Pardalos, P.M.: Nondifferentiable minimax fractional programming problems with \((C, \alpha, \rho, d)\)-convexity. J. Optim. Theory Appl. 129, 185–199 (2006)

    Article  Google Scholar 

  22. Zalmai, G.J., Zhang, Q.: Global parametric sufficient optimality conditions for semiinfinite discrete minmax fractional programming problems involving generalized \((\eta, \rho )\)-invex functions. Acta Math. Appl. Sin. Engl. Ser. 23, 217–234 (2007)

    Article  Google Scholar 

  23. Zalmai, G.J., Zhang, Q.: Parametric duality models for semiinfinite multiobjective fractional programming problems containing generalized \((\alpha, \eta, \rho )\)-\(V\)-invex functions. Acta Math. Appl. Sin. Engl. Ser. 29, 225–240 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayswal, A., Singh, V. & Kummari, K. Duality for nondifferentiable minimax fractional programming problem involving higher order \((\varvec{C},\varvec{\alpha}, \varvec{\rho}, \varvec{d})\)-convexity. OPSEARCH 54, 598–617 (2017). https://doi.org/10.1007/s12597-016-0295-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-016-0295-0

Keywords

Mathematics Subject Classification