Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi objective mean–variance–skewness model with Burg’s entropy and fuzzy return for portfolio optimization

  • Application Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

A new non-Shannon fuzzy Mean–Variance–Skewness-entropy model is proposed with stock returns are considered as triangular fuzzy numbers. The fuzzy stock portfolio selection models are presented with credibility theory that maximizes mean and skewness and minimizes portfolio variance and cross-entropy in terms of Burg. With addition of Burg’s entropy in the multi objective non linear models, focus is the generation of well diversified portfolios within the optimal allocation. For an imprecise capital market, this study facilitates a more reasonable investment decisions with four objective decision criteria including Burg’s entropy. Numerical examples with case studies are used to illustrate the entire method which can be efficiently used in practical purposes like national stock exchanges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Markowitz, H.: Portfolio selection*. J. Financ. 7, 77–91 (1952)

    Google Scholar 

  2. Sharpe, W.F.: A linear programming algorithm for mutual fund portfolio selection. Manag. Sci. 13, 499–510 (1967)

    Article  Google Scholar 

  3. Sharpe, W.F.: A linear programming approximation for the general portfolio analysis problem. J. Financ. Quant. Anal. 6, 1263–1275 (1971)

    Article  Google Scholar 

  4. Sengupta, J.K.: Portfolio decisions as games. Int. J. Syst. Sci. 20, 1323–1334 (1989)

    Article  Google Scholar 

  5. Stone, B.K.: A linear programming formulation of the general portfolio selection problem. J. Financ. Quant. Anal. 8, 621–636 (1973)

    Article  Google Scholar 

  6. Best, M.J., Grauer, R.R.: On the sensitivity of mean–variance–efficient portfolios to changes in asset means: some analytical and computational results. Rev. Financ. Stud. 4, 315–342 (1991)

    Article  Google Scholar 

  7. Lin, C.-C., Liu, Y.-T.: Genetic algorithms for portfolio selection problems with minimum transaction lots. Eur. J. Oper. Res. 185, 393–404 (2008)

    Article  Google Scholar 

  8. Deep, K., Singh, K.P., Kansal, M.L., Mohan, C.: A fuzzy interactive approach for optimal portfolio management. OPSEARCH 46, 69–88 (2009)

    Article  Google Scholar 

  9. Arditti, F.D.: Risk and the required return on equity. J. Financ. 22, 19–36 (1967)

    Article  Google Scholar 

  10. Konno, H., Shirakawa, H., Yamazaki, H.: A mean-absolute deviation-skewness portfolio optimization model. Ann. Oper. Res. 45, 205–220 (1993)

    Article  Google Scholar 

  11. Chunhachinda, P., Dandapani, K., Hamid, S., Prakash, A.: Portfolio selection and skewness: evidence from international stock markets. J. Bank. Financ. 21, 143–167 (1997)

    Article  Google Scholar 

  12. Konno, H.: Piecewise linear risk function and portfolio optimization. J. Oper. Res. Soc. Jpn. 33, 139–156 (1990)

    Article  Google Scholar 

  13. Konno, H., Suzuki, K.: A mean–variance–skewness portfolio optimization model. J. Oper. Res. Soc. Jpn. 38, 173–187 (1995)

    Article  Google Scholar 

  14. Prakash, A.J., Chang, C.-H., Pactwa, T.E.: Selecting a portfolio with skewness: recent evidence from US, European, and Latin American equity markets. J. Bank. Financ. 27, 1375–1390 (2003)

    Article  Google Scholar 

  15. Ibbotson, R.G.: Price performance of common stock new issues. J. Financ. Econ. 2, 235–272 (1975)

    Article  Google Scholar 

  16. Arditti, F.D., Levy, H.: Portfolio efficiency analysis in three moments: the multiperiod case. J. Financ. 30, 797–809 (1975)

    Google Scholar 

  17. Bhattacharyya, R., Chatterjee, A., Kar, S.: Uncertainty theory based multiple objective mean-entropy-skewness stock portfolio selection model with transaction costs. J. Uncertain. Anal. Appl. 1, 16 (2013)

    Article  Google Scholar 

  18. Jana, P., Roy, T.K., Mazumder, S.K.: Multi-objective possibilistic model for portfolio selection with transaction cost. J. Comput. Appl. Math. 228, 188–196 (2009)

    Article  Google Scholar 

  19. Huang, X.: Mean-semivariance models for fuzzy portfolio selection. J. Comput. Appl. Math. 217, 1–8 (2008)

    Article  Google Scholar 

  20. Jana, D., Maity, K., Roy, T.: A three-layer supply chain integrated production-inventory model under permissible delay in payments in uncertain environments. J. Uncertain. Anal. Appl. 1, 6 (2013)

    Article  Google Scholar 

  21. Gilmore, C.G., McManus, G.M., Tezel, A.: Portfolio allocations and the emerging equity markets of Central Europe. J. Multinatl. Financ. Manag. 15, 287–300 (2005)

    Article  Google Scholar 

  22. Kapur, J.N., Kesavan, H.K.: Entropy Optimization Principles with Applications. Academic Press, Cambridge (1992)

    Book  Google Scholar 

  23. Fang, S.-C., Rajasekera, J.R., Tsao, H.-S.J.: Entropy optimization models. In: Entropy Optimization and Mathematical Programming, International Series in Operations Research and Management Science, pp. 17–49. Springer, New York (1997)

  24. Ray, A., Majumder, S.K.: Derivation of some new distributions in statistical mechanics using maximum entropy approach. Yugosl. J. Oper. Res. 24, 145–155 (2014)

    Article  Google Scholar 

  25. Karmakar, K., Majumder, S.K.: Maximum entropy approach in a traffic stream. Appl. Math. Comput. 195, 61–65 (2008)

    Google Scholar 

  26. Rubinstein, R.Y., Kroese, D.P.: Combinatorial optimization via cross-entropy. In: The Cross-Entropy Method; Information Science and Statistics, pp. 129–186. Springer, New York (2004)

  27. Bera, A.K., Park, S.Y.: Optimal portfolio diversification using the maximum entropy principle. Econom. Rev. 27, 484–512 (2008)

    Article  Google Scholar 

  28. Huang, X.: Mean-entropy models for fuzzy portfolio selection. IEEE Trans. Fuzzy Syst. 16, 1096–1101 (2008)

    Article  Google Scholar 

  29. Qin, Z., Li, X., Ji, X.: Portfolio selection based on fuzzy cross-entropy. J. Comput. Appl. Math. 228, 139–149 (2009)

    Article  Google Scholar 

  30. Gupta, P., Mehlawat, M.K., Inuiguchi M., Chandra, S.: Portfolio optimization in fuzzy environment. In: Fuzzy Portfolio Optimization; Studies in Fuzziness and Soft Computing, pp. 61–80. Springer, Berlin (2014)

  31. Rather, A.M., Sastry, V.N., Agarwal, A.: Stock market prediction and portfolio selection models: a survey. OPSEARCH, 1–22 (2017). doi:10.1007/s12597-016-0289-y

  32. Bhattacharyya, R., Hossain, S.A., Kar, S.: Fuzzy cross-entropy, mean, variance, skewness models for portfolio selection. J. King Saud Univ. Comput. Inf. Sci. 26, 79–87 (2014)

    Article  Google Scholar 

  33. Bhattacharyya, R., Kar, S., Majumder, D.D.: Fuzzy mean–variance–skewness portfolio selection models by interval analysis. Comput. Math Appl. 61, 126–137 (2011)

    Article  Google Scholar 

  34. Roy, T.K., Maiti, M.: A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity. Eur. J. Oper. Res. 99, 425–432 (1997)

    Article  Google Scholar 

  35. Liu, B.: Toward uncertain finance theory. J. Uncertain. Anal. Appl. 1, 1 (2013)

    Article  Google Scholar 

  36. Li, X., Qin, Z., Kar, S.: Mean–variance–skewness model for portfolio selection with fuzzy returns. Eur. J. Oper. Res. 202, 239–247 (2010)

    Article  Google Scholar 

  37. Liu, L., Miao, S., Liu, B.: On nonlinear complexity and shannon’s entropy of finite length random sequences. Entropy 17, 1936–1945 (2015)

    Article  Google Scholar 

  38. Huang, X.: Fuzzy chance-constrained portfolio selection. Appl. Math. Comput. 177, 500–507 (2006)

    Google Scholar 

  39. Simkowitz, M.A., Beedles, W.L.: Diversification in a three-moment world. J. Financ. Quant. Anal. 13, 927–941 (1978)

    Article  Google Scholar 

  40. Li, X.: Fuzzy cross-entropy. J. Uncertain. Anal. Appl. 3, 2 (2015)

    Article  Google Scholar 

  41. Sadefo Kamdem, J., Tassak Deffo, C., Fono, L.A.: Moments and semi-moments for fuzzy portfolio selection. Insur. Math. Econ. 51, 517–530 (2012)

    Article  Google Scholar 

  42. Shannon, C.E.: A mathematical theory of communication. SIGMOBILE Mob. Comput. Commun. Rev, 5, 3–55 (2001)

    Article  Google Scholar 

  43. Burg, J.: The relationship between maximum entropy spectra and maximum likelihood spectra. Geophysics 37, 375–376 (1972)

    Article  Google Scholar 

  44. Kapur, J.N.: Measures of Information and Their Applications. Wiley, New York (1994)

    Google Scholar 

  45. Ray, A., Majumder, S.K.: A note on burg’s modified entropy in statistical mechanics. Mathematics 4, 10 (2016)

    Article  Google Scholar 

  46. Ray, A., Majumder, S.K.: Concavity of maximum entropy through modified Burg’s entropy subject to its prescribed mean. Int. J. Math. Oper. Res. 8, 393–405 (2016)

    Article  Google Scholar 

  47. Liu, B.: Uncertain risk analysis. In: Uncertainty Theory; Springer Uncertainty Research, pp. 137–149. Springer, Berlin (2015)

  48. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  49. Liu, B., Liu, Y.-K.: Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans. Fuzzy Syst. 10, 445–450 (2002)

    Article  Google Scholar 

  50. Liu, B.: Uncertainty Theory: An Introduction to Its Axiomatic Foundations. Springer Science & Business Media, Berlin (2004)

    Book  Google Scholar 

  51. Li, X., Liu, B.: A sufficient and necessary condition for credibility measures. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 14, 527–535 (2006)

    Article  Google Scholar 

  52. Li, P., Liu, B.: Entropy of credibility distributions for fuzzy variables. IEEE Trans. Fuzzy Syst. 16, 123–129 (2008)

    Article  Google Scholar 

  53. Li, X., Liu, B.: Maximum entropy principle for fuzzy variables. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 15, 43–52 (2007)

    Article  Google Scholar 

  54. Yan, L.: Optimal portfolio selection models with uncertain returns. Mod. Appl. Sci. 3, 76 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amritansu Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, A., Majumder, S.K. Multi objective mean–variance–skewness model with Burg’s entropy and fuzzy return for portfolio optimization. OPSEARCH 55, 107–133 (2018). https://doi.org/10.1007/s12597-017-0311-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-017-0311-z

Keywords