Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Rényi holographic dark energy model with two IR cutoffs in Marder type universe

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the study of Saez–Ballester scalar tensor theory (Saez and Ballester in Phys Lett A 113:467, 1986), we examine the cosmic expansion phenomenon using the Rényi holographic dark energy (RHDE) with spatially homogeneous and anisotropic Marder type space time. Using a metric potential relationship, we find the solution to the field equations. Using Hubble and Granda–Oliveros horizon as IR cutoffs, we have derived the equation of state parameter (EoS) (\(\omega _{de}\)), RHDE energy density (\(\rho _{de}\)) and matter energy density (\(\rho _{m}\)), RHDE density parameter (\(\Omega _{de}\)), and Om-diagnostic. In this study, these parameters are plotted against the redshift (z). For three different choices of n and \(\delta\), the EoS parameter exhibits quintom-like behavior for both IR cutoffs. Further, looking into the \(\omega _{de}-\omega _{de}'\) plane and stability of the DE model by using a metric perturbation method. It has been found that quintom-like behavior and freezing region explain the Universe’s accelerating rate of growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

None

References

  1. S Capozziello and M De Laurentis Phys. Rep. 509 167 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  2. I Dimitrijevic et al Proc. Steklov Inst. Math. 306 66 (2019)

    Article  MathSciNet  Google Scholar 

  3. I Dimitrijevic et al Symmetry 12 917 (2020)

    Article  ADS  Google Scholar 

  4. C H Brans and R H Dicke Phys. Rev 124 925 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  5. D Saez and V J Ballester Phys. Lett. A. 113 467 (1986)

    Article  ADS  Google Scholar 

  6. A Y Shaikh et al J. Astrophys. Astr. 40 25 (2019)

    Article  ADS  Google Scholar 

  7. U K Sharma et al J. Astrophys. Astr. 40 2 (2019)

    Article  ADS  Google Scholar 

  8. R K Mishra and H Dua Astrophys Space Sci. 364 195 (2019)

    Article  ADS  Google Scholar 

  9. R K Mishra and A Chand Astrophys Space Sci. 365 76 (2020)

    Article  ADS  Google Scholar 

  10. A Ahmad and S D Tade J. Phys.: Conf. Ser. 1913 012109 (2021)

    Google Scholar 

  11. P Garg et al Int. J. G. Meth. Moder. Phys. 18 2150221 (2021)

    Article  Google Scholar 

  12. R K Mishra and H Dua Astrophys. Space Sci. 366 47 (2021)

    Article  ADS  Google Scholar 

  13. R L Naidu et al New. Astro. 85 101564 (2021)

    Article  Google Scholar 

  14. P S Singh and P K Singh Universe 8 60 (2022)

    Article  ADS  Google Scholar 

  15. M V Santhi and T C Naidu New Astron. 92 101725 (2022)

    Article  Google Scholar 

  16. A D Miller et al Astrophys. J. 524 L1 (1989)

    Article  ADS  Google Scholar 

  17. A G Riess et al Astron. J. 116 1009 (1998)

    Article  ADS  Google Scholar 

  18. S Perlmutter et al Astrophys. J. 517 565 (1999)

    Article  ADS  Google Scholar 

  19. C Fedeli et al Astron. Astrophys. 500 667 (2009)

    Article  ADS  Google Scholar 

  20. S Nojiri and S D Odintsov Phys. Lett. B 639 144 (2006)

    Article  ADS  Google Scholar 

  21. K Bamba et al Astrophys. Space Sci. 342 155 (2012)

    Article  ADS  Google Scholar 

  22. L Amendola et al Phys. Dark. Univ. 1 1 (2012)

    Article  Google Scholar 

  23. L Amendola Phys. Rev. D 62 043511 (2000)

    Article  ADS  Google Scholar 

  24. M Malquarti et al Phys. Rev. D 68 023512 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  25. B Ratra and P J E Peebles Phys. Rev. D 37 3406 (1988)

    Article  ADS  Google Scholar 

  26. R R Caldwell Phys. Lett. B 545 23 (2002)

    Article  ADS  Google Scholar 

  27. T Padmanabhan Phys. Rev. D 66 021301 (2002)

    Article  ADS  Google Scholar 

  28. C Armendariz-Picon et al Phys. Rev. Lett. 85 4438 (2000)

    Article  ADS  Google Scholar 

  29. S Capozzielo Int. J. Mod. Phys. D 11 483 (2002)

    Article  ADS  Google Scholar 

  30. T Harko et al Phys. Rev. D 89 024020 (2011)

    Article  ADS  Google Scholar 

  31. M Li Phys. Lett. B 603 1 (2004)

    Article  ADS  Google Scholar 

  32. L Susskind J. Math. Phys. 36 6377 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  33. Y Gong et al Phys. Rev. D 72 043510 (2005)

    Article  ADS  Google Scholar 

  34. S Nojiri and S D Odintsov Gen. Relat. Gravit. 38 1285 (2006)

    Article  ADS  Google Scholar 

  35. M Li et al J. Cosmol. Astropart. Phys. 06 036 (2009)

    Article  ADS  Google Scholar 

  36. Z K Guo et al Phys. Rev. D 74 127304 (2006)

    Article  ADS  Google Scholar 

  37. L N Granda and A Oliveros Phys. Lett. B 669 275 (2008)

    Article  ADS  Google Scholar 

  38. H Wei and R G Cai Phys. Lett. B 660 113 (2008)

    Article  ADS  Google Scholar 

  39. L N Granda and A Oliveros Phys. Lett. B 671 199 (2009)

    Article  ADS  Google Scholar 

  40. N Drepanou et al Eur. Phys. J. C 82 449 (2022)

    Article  ADS  Google Scholar 

  41. G G Luciano and E N Saridakis Eur. Phys. J. C 82 558 (2022)

    Article  ADS  Google Scholar 

  42. C Tsallis and L J L Cirto Eur. Phys. J. C 73 2487 (2013)

    Article  ADS  Google Scholar 

  43. M Tavayef et al Phys. Lett. B 781 195 (2018)

    Article  ADS  Google Scholar 

  44. A S Jahromi et al Phys. Lett. B 780 21 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  45. A Rényi, in Proc.of the 4th Berkely Symp. on Mathematics, Statistics and Probability(University California Press, 1961), 547 561 (1961)

  46. H Moradpour et al Eur. Phys. J. C 78 829 (2018)

    Article  ADS  Google Scholar 

  47. U K Sharma and V C Dubey Int. J. Geom. Methods Mod. 19 2250010 (2020)

    Article  Google Scholar 

  48. U Y Divya Prasanthi, Y Aditya, Results Phys.17 103101 (2020)

  49. T Golanbari, et al., arXiv:2002.04097 (2020)

  50. S Maity and U Debnath Eur. Phys. J. Plus 134 514 (2019)

    Article  Google Scholar 

  51. U K Sharma and V C Dubey Mod. Phys. Lett. A 35 2050281 (2020)

    Article  ADS  Google Scholar 

  52. A Jawad et al Symmetry 10 635 (2018)

    Article  ADS  Google Scholar 

  53. S Rani et al Symmetry 11 509 (2019)

    Article  ADS  Google Scholar 

  54. A Jawad et al Phys. Dark. Univ. 27 100409 (2020)

    Article  Google Scholar 

  55. V C Dubey et al Astrophys. Space Sci. 365 129 (2020)

    Article  ADS  Google Scholar 

  56. G F R Ellis and M A H M Callum Commun. Math. Phys. 12 108 (1969)

    Article  ADS  Google Scholar 

  57. E Komatsu et al Astrophys. J. Suppl. 180 330 (2008)

    Article  ADS  Google Scholar 

  58. C B Kilinc., Astrophys. Space Sci.222 171 (1994)

  59. M Sharif and H R Kausar Phys. Lett. B 697 1 (2011)

    Article  ADS  Google Scholar 

  60. L Marder’s Proc. R. Soc. Lond. A246 133 (1958)

    ADS  Google Scholar 

  61. K P Singh, Abdussattar, J.Phys.A Mat. N.G.6 1090 (1973)

  62. S Prakash Astrophys. Space Sci. 111 383 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  63. A R Roy and B Chatterjee Acta Physica Academiae Scientiarum Hungaricae 48 383 (1980)

    Article  MathSciNet  Google Scholar 

  64. B Mukherjee Heavy Ion Phys. 18 115 (2003)

    Article  Google Scholar 

  65. S Aygün et al Pramana J. Phys. 68 21 (2007)

    Google Scholar 

  66. S Aygün et al J. Geo. Phys. 62 100 (2012)

    Article  ADS  Google Scholar 

  67. S Aygün et al Astrophys. Space Sci 361 380 (2016)

    Article  ADS  Google Scholar 

  68. A Ali et al., Int.J.innov.sci.math.7 2347 (2019)

  69. D D Pawar, Y S Solanke, arXiv preprint arXiv:1602.05222 (2016)

  70. D D Pawar and M K Panpatte Prespacetime J. 7 1187 (2016)

    Google Scholar 

  71. S Aygün Turk. J. Phys. 41 436 (2017)

    Article  Google Scholar 

  72. S Aygün et al Indian J. Phys. 93 407 (2019)

    Article  ADS  Google Scholar 

  73. A Kabak Aygün S Int. J. Mod. Phys. 9 50 (2019)

    Google Scholar 

  74. C Aktas et al Mod. Phys. Lett. A 33 1850135 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  75. C Kömürcü and C Aktas Mod. Phys. Lett. A 35 2050263 (2020)

    Article  ADS  Google Scholar 

  76. D D Pawar et al New Astron. 87 101599 (2021)

    Article  Google Scholar 

  77. M V Santhi et al MSEA 71 1056 (2022)

    Google Scholar 

  78. M V Santhi et al Indian J. Phys. (2022). https://doi.org/10.1007/s12648-022-02515-9

    Article  Google Scholar 

  79. M V Santhi and T Chinnappalanaidu Int. J. Geom. Methods Mod. 19 2250211 (2022)

    Article  Google Scholar 

  80. C B Collins et al Gen. Relativ. Gravit. 12 805 (1980)

    Article  ADS  Google Scholar 

  81. M S Berman Nuovo Cimento B 74 182 (1983)

    Article  ADS  Google Scholar 

  82. S Kumar, C P Singh Gen. Relativ. Gravit.43 1427 (2011)

  83. G C Samanta Int. J. Theor. Phys.52 2303 (2013)

  84. M V Santhi et al Can. J. Phys. 96 55 (2017)

    Article  ADS  Google Scholar 

  85. B K Bishi et al Int. J. Geom. Methods Mod. Phys. 14 1750158 (2017)

    Article  MathSciNet  Google Scholar 

  86. M V Santhi and T C Naidu, Indian J. Phys.96 953 (2022)

  87. G C Samanta and B Mishra Iran. J. Sci. Technol. Trans. Sci. 41 535 (2017)

    Article  MathSciNet  Google Scholar 

  88. L Amendola and S Tsujikawa, Cambridge Universeity Press (2015)

  89. N Aghanim, et al., [Plancks Collaboration] (2018) A & A641 A6 (2020)

  90. R Caldwell and E V Linder Phys. Rev. Lett 95 141301 (2005)

    Article  ADS  Google Scholar 

  91. P A R Ade et al Astrophysics 571 A16 (2014)

    ADS  Google Scholar 

  92. G F Hinshaw et al Astrophys J. Suppl. 208 19 (2013)

    Article  ADS  Google Scholar 

  93. C M Chen and W F Kao Phys. Rev. D 64 124019 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  94. L K Sharma et al Int. J. Geom. Method Mod. Phys. 1 2050111 (2020)

    Article  Google Scholar 

  95. V Sahni et al Phys. Rev. D 78 103502 (2008)

    Article  ADS  Google Scholar 

  96. I Waga Astrophys. J. 414 436 (1993)

    Article  ADS  Google Scholar 

  97. D W Hogg, arXiv:astro-ph/9905116v4 (2000)

  98. P Rudra Astrophys. Space. Sci. 342 579 (2012)

    Article  ADS  Google Scholar 

  99. M Younas et al Adv. High. Energy. Phys 2019 1287932 (2019)

    Article  Google Scholar 

  100. A Iqbal A Jawad Phys. Dark. Univ. 26 100349 (2019)

    Article  Google Scholar 

  101. G G Luciano Phys. Dark. Univ. 41 101237 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

MVS acknowledges Department of Science and Technology (DST), Govt of India, New Delhi for financial support to carry out the Research Project [No. EEQ/2021/000737, Dt. 07/03/2022]. The authors are very much thankful to the editorial team and the reviewer’s for their constructive comments and valuable suggestions which have certainly improved the presentation and quality of the paper.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The study was carried out in collaboration of all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. Vijaya Santhi.

Ethics declarations

Conflict of interest

The Authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhi, M.V., Chinnappalanaidu, T. & Tripathy, M. Rényi holographic dark energy model with two IR cutoffs in Marder type universe. Indian J Phys 98, 3393–3408 (2024). https://doi.org/10.1007/s12648-023-03051-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-03051-w

Keywords