Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

In this paper, we develop a multiscale finite element method for solving flows in fractured media. Our approach is based on generalized multiscale finite element method (GMsFEM), where we represent the fracture effects on a coarse grid via multiscale basis functions. These multiscale basis functions are constructed in the offline stage via local spectral problems following GMsFEM. To represent the fractures on the fine grid, we consider two approaches (1) discrete fracture model (DFM) (2) embedded fracture model (EFM) and their combination. In DFM, the fractures are resolved via the fine grid, while in EFM the fracture and the fine grid block interaction is represented as a source term. In the proposed multiscale method, additional multiscale basis functions are used to represent the long fractures, while short-size fractures are collectively represented by a single basis functions. The procedure is automatically done via local spectral problems. In this regard, our approach shares common concepts with several approaches proposed in the literature as we discuss. We would like to emphasize that our goal is not to compare DFM with EFM, but rather to develop GMsFEM framework which uses these (DFM or EFM) fine-grid discretization techniques. Numerical results are presented, where we demonstrate how one can adaptively add basis functions in the regions of interest based on error indicators. We also discuss the use of randomized snapshots (Calo et al. Randomized oversampling for generalized multiscale finite element methods, 2014), which reduces the offline computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baca, R., Arnett, R., Langford, D.: Modeling fluid flow in fractured porous rock masses by finite element techniques. Int. J. Num. 4, 337–348 (1984)

    Article  MATH  Google Scholar 

  • Calo, V., Efendiev, Y., Galvis, J., Li, G.: Randomized oversampling for generalized multiscale finite element methods (2014). arXiv:1409.7114

  • Chung, E.T., Efendiev, Y., Li, G.: An adaptive GMsFEM for high-contrast flow problems. J. Comput. Phys. 273, 54–76 (2014)

    Article  MathSciNet  Google Scholar 

  • Chung, E.T., Efendiev, Y., Leung, W.T.: Generalized multiscale finite element methods for wave propagation in heterogeneous media. Multiscale Model. Simul. 12(4), 1691–1721 (2014)

    Article  MathSciNet  Google Scholar 

  • Cortinovis, D., Jenny, P.: Iterative galerkin-enriched multiscale finite-volume method. J. Comput. Phys. 277, 248–267 (2014)

    Article  MathSciNet  Google Scholar 

  • Durlofsky, L.J.: Numerical calculation of equivalent grid bock permeability tensors for heterogeneous porous media. Water Resour. Res. 27(5), 699–708 (1991)

    Article  MathSciNet  Google Scholar 

  • Efendiev, Y., Galvis, J.: Coarse-grid multiscale model reduction techniques for flows in heterogeneous media and applications. In: Numerical Analysis of Multiscale Problems, Lecture Notes in Computational Science and Engineering, vol. 83, pp. 97–125 (2012)

  • Efendiev, Y., Galvis, J., Li, G., Presho, M.: Generalized multiscale finite element methods: nonlinear elliptic equations. Commun. Comput. Phys. 15, 733–755 (2014)

    MathSciNet  Google Scholar 

  • Efendiev, Y., Galvis, J., Hou, T.: Generalized multiscale finite element methods. J. Comput. Phys. 251, 116–135 (2013)

    Article  MathSciNet  Google Scholar 

  • Efendiev, Y., Galvis, J., Lazarov, R., Willems, J.: Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms. ESAIM Math. Model. Numer. Anal. 46(5), 1175–1199 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Efendiev, Y., Galvis, J., Li, G., Presho, M.: Generalized multiscale finite element methods: oversampling strategies. Int. J. Multiscale Comput. Eng. 12(6), 465–484 (2014)

    Article  Google Scholar 

  • Efendiev, Y., Galvis, J., Moon, M., Lazarov, R., Sarkis, M.: Generalized multiscale finite element method: symmetric interior penalty coupling. J. Comput. Phys. 255, 1–15 (2013)

    Article  MathSciNet  Google Scholar 

  • Efendiev, Y., Galvis, J., Wu, X.H.: Multiscale finite element methods for high-contrast problems using local spectral basis functions. J. Comput. Phys. 230, 937–955 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Ghommem, M., Calo, V.M., Efendiev, Y.: Mode decomposition methods for flows in high-contrast porous media. A global approach. J. Comput. Phys. 257, 400–413 (2014)

    Article  MathSciNet  Google Scholar 

  • Gong, B., Karimi-Fard, M., Durlofsky, L.J.: Upscaling discrete fracture characterizations to dual-porosity, dual-permeability models for efficient simulation of flow with strong gravitational effects. SPE J. 13(1), 58–67 (2008)

    Article  Google Scholar 

  • Hajibeygi, H., Karvounis, D., Jenny, P.: A loosely coupled hierarchical fracture model for the iterative multiscale finite volume method. Soc. Petrol. Eng. (2011). doi:10.2118/141991-MS

  • Hoteit, H., Firoozabadi, A.: An efficient numerical model for incompressible two-phase flow in fractured media. Adv. Water Resour. 31, 891–905 (2008)

    Article  Google Scholar 

  • Hou, T., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Huang, Z., Yao, J., Wang, Y., Tao, K.: Numerical study on two-phase flow through fractured porous media. Sci. China-Technol. Sci. 54, 2412–2420 (2011)

    Article  MATH  Google Scholar 

  • Karimi-Fard, M.M., Firoozabadi, A.: Numerical simulation of water injection in 2d fractured media using discrete-fracture model. SPE REE J. 4, 117–126 (2003)

    Article  Google Scholar 

  • Lee, S.H., Lough, M.F., Jensen, C.L.: Hierarchical modeling of flow in naturally fractured formations with multiple length scales. Water Resour. Res. 37(3), 443–455 (2001)

    Article  Google Scholar 

  • Li, L., Lee, S.H.: Efficient field-scale simulation of black oil in naturally fractured reservoir through discrete fracture networks and homogenized media. SPE Reserv. Eval. Eng. 11(4), 750–758 (2008). doi:10.2118/103901-PA

  • Lough, M.F., Lee, S.H., Kamath, J.: A new method to calculate effective permeability of gridblocks used in the simulation of naturally fractured reservoirs. SPE (1997). doi:10.2118/36730-PA

  • Noorishad, J., Mehran, M.: An upstream finite element method for solution of transient transport equation in fractured porous media. Water Resour. Res. 18(3), 588–596 (1982)

    Article  Google Scholar 

  • Wu, Y.-S., Di, Y., Kang, Z., Fakcharoenphol, P.: A multiple-continuum model for simulating single-phase and multiphase flow in naturally fractured vuggy reservoirs. J. Petrol. Sci. Eng. 78(1), 13–22 (2011)

  • Wu, Y.-S., Qin, G., Ewing, R.E., Efendiev, Y., Kang, Z., Ren, Y.: A multiple-continuum approach for modeling multiphase flow in naturally fractured vuggy petroleum reservoirs. Soc. Petrol. Eng. (2006). doi:10.2118/104173-MS

  • Zhang, N., Yao, J., Huang, Z., Wang, Y.: Accurate multiscale finite element method for numerical simulation of two-phase flow in fractured media using discrete-fracture model. J. Comput. Phys. 242, 420–438 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Efendievs work is partially supported by the US Department of Energy Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under Award Number DE-FG02-13ER26165 and the DoD Army ARO Project. Yao’s work is partially supported by the National Basic Research Program of China (973 Program) (Grant No. 2011CB201004), the National Natural Science Foundation of China (Grant No. 51234007), the Outstanding Doctoral Dissertation Training program of China university of petroleum (Grant No. LW120201A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalchin Efendiev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efendiev, Y., Lee, S., Li, G. et al. Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method. Int J Geomath 6, 141–162 (2015). https://doi.org/10.1007/s13137-015-0075-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-015-0075-7

Keywords

Mathematics Subject Classification