Abstract
Sentiment analysis aimed to automate the task of discriminating the sentiment tendency of a textual review, which expresses a simple sentiment as positive, negative, or neutral. In general, the basic sentiment analysis solution used for feature extraction is the word embedding technique, which only focuses on the contextual or global semantic information and ignores the sentiment polarity of text. Thus, the word embedding technique leads to biased analysis results, especially for some words that have the same semantic context but an opposite sentiment. In this paper, we propose an integrated sentiment embedding method to combine context and sentiment information using a dual-task learning algorithm to perform sentiment analysis. First, we propose three sentiment language models by encoding the sentiment information of texts into word embedding based on three existing semantic models, namely, continuous bag-of-words, prediction, and log-bilinear. Next, based on semantic language models and the proposed sentiment language models, we propose a dual-task learning algorithm to generate hybrid word embedding named integrated sentiment embedding, in which the joint learning method and parallel learning method are applied to jointly process tasks. Experiments on sentence-level and document-level sentiment classification tasks demonstrate that the proposed integrated sentiment embedding has better classification performances compared with basic word embedding methods.





Similar content being viewed by others
References
Berger, A.L.; Pietra, V.J.D.; Pietra, S.A.D.: A maximum entropy approach to natural language processing. Comput. Linguist. 22(1), 39–71 (1996)
Collobert, R.; Weston, J.; Bottou, L.; et al.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)
Chowdhury, G.: Natural language processing. Annu. Rev. Inf. Sci. Technol. 37, 51–89 (2003)
Mikolov, T.; Chen, K.; Corrado, G.; et al.: Efficient estimation of word representations in vector space (2013). arXiv preprint arXiv:1301.3781
Guthrie, D.; Allison, B.; Liu, W.; et al.: A closer look at skip-gram modelling. In: Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC-2006), pp. 1–4 (2006)
Mnih, A.; Hinton, G.: Three new graphical models for statistical language modelling. In: Proceedings of the 24th International Conference on Machine Learning, pp. 641–648 (2007)
Mikolov, T.; Sutskever, I.; Chen, K.; et al.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)
Kühnen, U.; Hannover, B.; Schubert, B.: The semantic-procedural interface model of the self: the role of self-knowledge for context-dependent versus context-independent modes of thinking. J. Pers. Soc. Psychol. 80(3), 397 (2001)
Chen, H.; Finin, T.; Joshi, A.: Semantic web in the context broker architecture, UMBC Faculty Collection (2004)
Maton, K.: Making semantic waves: a key to cumulative knowledge-building. Linguist. Educ. 24(1), 8–22 (2013)
Bellegarda, J.R.: Exploiting latent semantic information in statistical language modeling. Proc. IEEE 88(8), 1279–1296 (2000)
Pennington, J.; Socher, R.; Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)
Bellegarda, J.R.: Exploiting both local and global constraints for multi-span statistical language modeling. ICASSP 2, 677–680 (1998)
Zhai, F.; Potdar, S.; Xiang, B.; et al.: Neural models for sequence chunking. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)
Bonhage, C.E.; Meyer, L.; Gruber, T.; et al.: Oscillatory EEG dynamics underlying automatic chunking during sentence processing. Neuroimage 66, 11–21 (2015)
Carneiro, H.C.C.; França, F.M.G.; Lima, P.M.V.: Multilingual part-of-speech tagging with weightless neural networks. Neural Netw. 152, 647–657 (2017)
Jamatia, A.; Gambäck, B.; Das, A.: Part-of-speech tagging for code-mixed English-Hindi twitter and facebook chat messages. In: Proceedings of the International Conference Recent Advances in Natural Language Processing, pp. 239–248 (2015)
Lample, G.; Ballesteros, M.; Subramanian, S.; et al.: Neural architectures for named entity recognition (2016). arXiv preprint arXiv:1603.01360
Neelakantan, A.; Collins, M.: Learning dictionaries for named entity recognition using minimal supervision (2015). arXiv preprint arXiv:1504.06650
Cambria, E.: Affective computing and sentiment analysis. IEEE Intell. Syst. 31(2), 102–107 (2016)
Tang, D.; Wei, F.; Qin, B.; et al.: Sentiment embeddings with applications to sentiment analysis. IEEE Trans. Knowl. Data Eng. 28(2), 496–509 (2016)
Liu, K.L.; Li, W.J.; Guo, M.: Emoticon smoothed language models for twitter sentiment analysis. Aaai 12, 22–26 (2012)
Maas, A.L.; Daly, R.E.; Pham, P.T.; et al.: Learning word vectors for sentiment analysis. In: Meeting of the Association for Computational Linguistics. Human Language Technologies. Association for Computational Linguistics (2011)
Tang, D.; Wei, F.; Yang, N.; et al.: Learning sentiment-specific word embedding for twitter sentiment classification. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, vol. 1, pp. 1555–1565 (2014)
Tang, D.; Wei, F.; Qin, B.; et al.: Coooolll: a deep learning system for twitter sentiment classification. In: Proceedings of the 8th international workshop on semantic evaluation (SemEval 2014), pp. 208–212 (2014)
Pang, B.; Lee, L.: A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp. 271–279. Association for Computational Linguistics (2004)
Lai, S.; Liu, K.; He, S.; et al.: How to generate a good word embedding. IEEE Intell. Syst. 31(6), 5–14 (2016)
Mnih, A.; Hinton, G.E.: A scalable hierarchical distributed language model. In: Advances in Neural Information Processing Systems, pp. 1081–1088 (2009)
Mikolov, T.; Kombrink, S.; Burget, L.; et al.: Extensions of recurrent neural network language model. In: Acoustics, Speech and Signal Processing (ICASSP), pp. 5528–5531 (2011)
Mikolov, T.; Zweig, G.: Context dependent recurrent neural network language model. In: 2012 IEEE Spoken Language Technology Workshop (SLT) pp. 234–239 (2012)
Bengio, Y.; Ducharme, R.; Vincent, P.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)
Collobert, R.; Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning (2008)
Young, T.; Hazarika, D.; Poria, S.; et al.: Recent trends in deep learning based natural language processing. IEEE Comput. Intell. Mag. 13(3), 55–75 (2018)
Kumar, A.; Irsoy, O.; Ondruska, P.; et al.: Ask me anything: dynamic memory networks for natural language processing. In: International Conference on Machine Learning, pp. 1378–1387 (2016)
Kombrink, S.; Mikolov, T.; Karafiät M.; et al.: Recurrent neural network based language modeling in meeting recognition. In: Twelfth Annual Conference of the International Speech Communication Association (2011)
Mikolov, T.; Karafiät, M.; Burget, L.; et al.: Recurrent neural network based language model. In: Eleventh Annual Conference of the International Speech Communication Association (2010)
Mikolov, T.; Chen, K.; Corrado, G.; Dean, J.: Efficient estimation of word representations in vector space (2013). arXiv preprint arXiv:1301.3781
Morin, F.; Bengio, Y.: Hierarchical probabilistic neural network language model. Aistats 5, 246–252 (2005)
Goldberg, Y.; Levy, O.: word2vec explained: deriving mikolov et al.’s negative-sampling word-embedding method [Online] (2014). arXiv:1402.3722
Hinton, G.E.; Osindero, S.; Teh, Y.W.: A fast learning algorithm for deep belief networks. Neural Comput. 18, 1527–1554 (2006)
Ma, Y.; Peng, H.; Cambria, E.: Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM[C]. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)
Al-Rfou, R.; Choe, D.; Constant, N.; et al.: Character-level language modeling with deeper self-attention[C]. Proc. AAAI Conf. Artif. Intell. 33, 3159–3166 (2019)
Devlin, J.; Chang, M.W.; Lee, K.; et al.: Bert: pre-training of deep bidirectional transformers for language understanding[J] (2018). arXiv preprint arXiv:1810.04805
Bespalov, D.; Bai, B.; Qi, Y.; Shokoufandeh, A.: Sentiment classification based on supervised latent n-gram analysis. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 375–382 (2011)
Vilares, D.; Alonso, M.A.; et al.: Sentiment analysis on monolingual, multilingual and code-switching twitter corpora[C]. In: Proceedings of the 6th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 2–8 (2015)
Abdulla, N.A.; Ahmed, N.A.; Shehab, M.A.; et al.: Arabic sentiment analysis: Lexicon-based and corpus-based[C]//2013. In: IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies, pp. 1–6 (2013)
Steiner-Correa, F.; Viedma-del-Jesus, M.I.; Lopez-Herrera, A.G.: A survey of multilingual human-tagged short message datasets for sentiment analysis tasks. Soft. Comput. 22, 8227–8242 (2018)
Al-Smadi, M.; Talafha, B.; Al-Ayyoub, M.; et al.: Using long short-term memory deep neural networks for aspect-based sentiment analysis of Arabic reviews. Int. J. Mach. Learn. Cybernet. 10, 2163–2175 (2018)
Ranjan, R.; Patel, V.M.; Chellappa, R.: Hyperface: a deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 41, 121–135 (2019)
Zhang, Z.; Luo, P.; Loy, C.C.; et al.: Facial landmark detection by deep multi-task learning. In: European Conference on Computer Vision, pp. 94–108 (2014)
Liu, W.; et al.: Multi-task deep visual-semantic embedding for video thumbnail selection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)
Argyriou, A.; Evgeniou, T.; Pontil, M.: Multi-task feature learning. In: Advances in Neural Information Processing Systems, pp. 41–48 (2007)
Dahl, G.; Yu, D.; Deng, L.; Acero, A.: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(1), 30–42 (2012)
Agostinelli, F.; Hoffman, M.; Sadowski, P.; Baldi, P.: Learning activation functions to improve deep neural networks [Online] (2014). arXiv:1412.6830
Zhang, B.; Liu, C.H.; Tang, J.; et al.: Learning-based energy-efficient data collection by unmanned vehicles in smart cities. IEEE Trans. Ind. Inf. 14(4), 1666–1676 (2018)
Vogl, T.P.; Mangis, J.K.; Rigler, A.K.; et al.: Accelerating the convergence of the back-propagation method. Biol. Cybern. 59, 257–263 (1988)
Ng, A.Y.: Feature selection, L 1 vs. L 2 regularization, and rotational invariance. In: Proceedings of the Twenty-first International Conference on Machine Learning, pp. 78–98 (2004)
Acknowledgements
This work was supported by the Fundamental Research Funds for the Central Universities (2019YJ S006) and the National Key Research and Development of China (2016YFB0800900).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fu, Y., Liu, Y. & Peng, SL. An Integrated Word Embedding-Based Dual-Task Learning Method for Sentiment Analysis. Arab J Sci Eng 45, 2571–2586 (2020). https://doi.org/10.1007/s13369-019-04241-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13369-019-04241-7