Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Performance Analysis of Energy Harvesting in Dense Urban Millimeter-Wave Cellular Network Using Stochastic Geometry

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Energy harvesting (EH) in millimeter-wave (mm-wave) cellular networks has recently gained considerable interest due to the extensive use of massive antenna arrays and the dense deployment of base stations (BSs). Solid objects can easily block mm-wave signals, leading to high path losses, which result in non-line-of-sight (NLOS) conditions and signal outages. This paper presents an analytical framework to evaluate the energy coverage probability (ECP) performance of typical user equipment (TUE) in mm-wave cellular networks employing stochastic geometry. We utilize a line-of-sight (LOS) ball model to incorporate the blockage effects and derive a closed-form expression for the ECP. We compare the ECP derived from the LOS ball model with that from random shape blockage models, which are adapted to urban building data for Austin and Los Angeles. We also investigate the impact of varying the LOS ball radius on ECP performance. The derived ECP expression proves analytically tractable, enabling further analysis. The results show that the LOS ball model effectively characterizes the effect of blockages, similar to the random shape model. Furthermore, the findings demonstrate that increasing the density of BSs leads to an increasing trend in the ECP, making the influence of NLOS links negligible compared to that of LOS links. The reason is that dense BS deployment enhances the likelihood of having an LOS link between the BS and the UE. This study provides valuable insights for developing efficient wireless EH systems in mm-wave networks by leveraging higher BS density and enhancing LOS conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sharma, P.; Singh, A.K.: A survey on RF energy harvesting techniques for lifetime enhancement of wireless sensor networks. Sustain. Comput. Informatics Syst. 37, 100836 (2023). https://doi.org/10.1016/j.suscom.2022.100836

    Article  Google Scholar 

  2. Wu, Q.; Li, G.Y.; Chen, W.; Ng, D.W.K.; Schober, R.: An overview of sustainable green 5G networks. IEEE Wirel. Commun. 24, 4–12 (2017). https://doi.org/10.1109/MWC.2017.1600343

    Article  Google Scholar 

  3. Muhammad, N.A.; Seman, N.; Apandi, N.I.A.; Li, Y.: Energy harvesting in sub-6 GHz and millimeter wave hybrid networks. IEEE Trans. Veh. Technol. 70, 4471–4484 (2021). https://doi.org/10.1109/TVT.2021.3068956

    Article  Google Scholar 

  4. Lorenz, C.H.P.; Hemour, S.; Wu, K.: Physical mechanism and theoretical foundation of ambient RF power harvesting using zero-bias diodes. IEEE Trans. Microw. Theory Tech. 64, 2146–2158 (2016). https://doi.org/10.1109/TMTT.2016.2574848

    Article  Google Scholar 

  5. Niotaki, K.; Carvalho, N.B.; Georgiadis, A.; Gu, X.; Hemour, S.; Wu, K.; Matos, D.; Belo, D.; Pereira, R.; Figueiredo, R.; Chaves, H.; Mendes, B.; Correia, R.; Oliveira, A.; Palazzi, V.; Alimenti, F.; Mezzanotte, P.; Roselli, L.; Benassi, F.; Costanzo, A.; Masotti, D.; Paolini, G.; Eid, A.; Hester, J.; Tentzeris, M.M.; Shinohara, N.: RF energy harvesting and wireless power transfer for energy autonomous wireless devices and RFIDs. IEEE J. Microwaves. 3, 763–782 (2023). https://doi.org/10.1109/JMW.2023.3255581

    Article  Google Scholar 

  6. Wu, Q.; Zhang, R.: Weighted sum power maximization for intelligent reflecting surface aided SWIPT. IEEE Wirel. Commun. Lett. 9, 586–590 (2020). https://doi.org/10.1109/LWC.2019.2961656

    Article  Google Scholar 

  7. Ponnimbaduge Perera, T.D.; Jayakody, D.N.K.; Sharma, S.K.; Chatzinotas, S.; Li, J.: Simultaneous wireless information and power transfer SWIPT: recent advances and future challenges. IEEE Commun. Surv. Tutorials 20(1), 264–302 (2018)

    Article  Google Scholar 

  8. Wagih, M.; Weddell, A.S.; Beeby, S.: Millimeter-wave power harvesting: a review. IEEE Open J Antennas Propag 1, 560–578 (2020). https://doi.org/10.1109/OJAP.2020.3028220

    Article  Google Scholar 

  9. Nguyen, T.T.H.; Nguyen, T.N.; Duy, T.T.; Son, N.H.; Hanh, T.; Vu, M.B.; Tu, L.T.: Coverage probability of energy harvesting enabled LoRa networks with stochastic geometry. J. Inf. Telecommun. 8, 262–279 (2024). https://doi.org/10.1080/24751839.2023.2281144

    Article  Google Scholar 

  10. Azali, N.A., Muhammad, N.A., Apandi, N.I.A., Sunar, N., Wahab, N.H.A.: Energy Coverage Analysis of Millimeter Wave Wireless Power Transfer. In: Conference Proceedings - 2022 IEEE 6th International Symposium on Telecommunication Technologies: Intelligent Connectivity for Sustainable World, ISTT 2022 (2022). https://doi.org/10.1109/ISTT56288.2022.9966536

  11. Korrai, P.K.; Rao, K.D.: Performance analysis of downlink mmWave networks under LoS/NLoS propagation with blockage and directional beamforming. Telecommun. Syst. 72, 53–68 (2019). https://doi.org/10.1007/s11235-019-00547-x

    Article  Google Scholar 

  12. Luo, Y.; Pu, L.; Wang, G.; Zhao, Y.: RF energy harvesting wireless communications: Rf environment, device hardware and practical issues. Sensors 19, 3010 (2019). https://doi.org/10.3390/s19133010

    Article  Google Scholar 

  13. Andrews, J.G.; Bai, T.; Kulkarni, M.N.; Alkhateeb, A.; Gupta, A.K.; Heath, R.W.: Modeling and analyzing millimeter wave cellular systems. IEEE Trans. Commun. 65, 403–430 (2017). https://doi.org/10.1109/TCOMM.2016.2618794

    Article  Google Scholar 

  14. Hmamouche, Y.; Benjillali, M.; Saoudi, S.; Yanikomeroglu, H.; Di, Renzo M.: New trends in stochastic geometry for wireless networks: a tutorial and survey. Proceed. IEEE 109(7), 1200–1252 (2021). https://doi.org/10.1109/JPROC.2021.3061778

    Article  Google Scholar 

  15. Khan, T.A., Heath, R.W.: Analyzing wireless power transfer in millimeter wave networks with human blockages. In: Proceedings - IEEE Military Communications Conference MILCOM (2017). https://doi.org/10.1109/MILCOM.2017.8170827

  16. Khan, T.A., Alkhateeb, A., Heath, R.W.: Energy coverage in millimeter wave energy harvesting networks. In: 2015 IEEE Globecom Workshops, GC Wkshps 2015 - Proceedings (2015). https://doi.org/10.1109/GLOCOMW.2015.7414219

  17. Ruiz, C.G.; Pascual-Iserte, A.; Munoz, O.: Analysis of blocking in mmWave cellular systems: application to relay positioning. IEEE Trans. Commun. 69, 1329–1342 (2021). https://doi.org/10.1109/TCOMM.2020.3038177

    Article  Google Scholar 

  18. Alyosef, A., Rizou, S., Zaharis, Z.D., Lazaridis, P.I., Nor, A.M., Fratu, O., Halunga, S., Yioultsis, T. V., Kantartzis, N. V.: A Survey on the Effects of Human Blockage on the Performance of mm Wave Communication Systems. In: 2022 IEEE International Black Sea Conference on Communications and Networking, BlackSeaCom 2022 (2022). https://doi.org/10.1109/BlackSeaCom54372.2022.9858201

  19. Bai, T.; Heath, R.W.: Coverage and rate analysis for millimeter-wave cellular networks. IEEE Trans. Wirel. Commun. 14(2), 1100–1114 (2015). https://doi.org/10.1109/TWC.2014.2364267

    Article  Google Scholar 

  20. Fang, S.; Chen, G.; Xu, X.; Han, S.; Tang, J.: Millimeter-wave coordinated beamforming enabled cooperative network: a stochastic geometry approach. IEEE Trans. Commun. 69, 1068–1079 (2021). https://doi.org/10.1109/TCOMM.2020.3035387

  21. Gruppi, E.; Wong, K.K.; Chin, W.H.: On LOS contribution to ultra-dense network. IEEE Access. 8, 100288–100297 (2020). https://doi.org/10.1109/ACCESS.2020.2993199

    Article  Google Scholar 

  22. Bai, T.; Vaze, R.; Heath, R.W.: Analysis of blockage effects on urban cellular networks. IEEE Trans. Wirel. Commun. 13, 5070–5083 (2014). https://doi.org/10.1109/TWC.2014.2331971

    Article  Google Scholar 

  23. Wang, M.; Zhang, C.; Chen, X.; Tang, S.: Performance analysis of millimeter wave wireless power transfer with imperfect beam alignment. IEEE Trans. Veh. Technol. 70, 2605–2618 (2021). https://doi.org/10.1109/TVT.2021.3061653

  24. Khan, T.A.; Heath, R.W.: Wireless power transfer in millimeter wave tactical networks. IEEE Signal Process. Lett. 24, 1284–1287 (2017). https://doi.org/10.1109/LSP.2017.2715324

  25. Zhang, X.; Liu, Y.; Wang, Y.; Bai, J.: Performance analysis and optimization for non-uniformly deployed mmWave cellular network. Eurasip J. Wirel. Commun. Netw. 2019, 1–5 (2019). https://doi.org/10.1186/s13638-019-1370-z

    Article  Google Scholar 

  26. Sattari, M.; Abbasfar, A.: Modeling and analyzing of millimeter wave heterogeneous cellular networks by poisson hole process. Wirel. Pers. Commun. 116, 2777–2804 (2021). https://doi.org/10.1007/s11277-020-07820-2

    Article  Google Scholar 

  27. Zia, M.S., Blough, D.M., Weitnauer, M.A.: On the effects of blockage on load modeling in millimeter-wave cellular networks. IEEE Vehicular Technology Conference (2021). https://doi.org/10.1109/VTC2021-Fall52928.2021.9625443

  28. Ouamri, M.A.: Stochastic geometry modeling and analysis of downlink coverage and rate in small cell network. Telecommun. Syst. 77, 767–779 (2021). https://doi.org/10.1007/s11235-021-00770-5

    Article  Google Scholar 

  29. Khan, T.A.; Alkhateeb, A.; Heath, R.W.: Millimeter wave energy harvesting. IEEE Trans. Wirel. Commun. 15, 6048–6062 (2016). https://doi.org/10.1109/TWC.2016.2577582

    Article  Google Scholar 

  30. Rebato, M.; Park, J.; Popovski, P.; De Carvalho, E.; Zorzi, M.: Stochastic geometric coverage analysis in mmwave cellular networks with realistic channel and antenna radiation models. IEEE Trans. Commun. 67, 3736–3752 (2019). https://doi.org/10.1109/TCOMM.2019.2895850

    Article  Google Scholar 

  31. Yu, X.; Zhang, J.; Letaief, K.B.: Coverage analysis for dense millimeter wave cellular networks: the impact of array size. IEEE Wirel. Commun. Netw. Conf. WCNC. (2016). https://doi.org/10.1109/WCNC.2016.7564903

    Article  Google Scholar 

  32. Nemati, M.; Park, J.; Choi, J.: RIS-assisted coverage enhancement in millimeter-wave cellular networks. IEEE Access. 8, 188171–188185 (2020). https://doi.org/10.1109/ACCESS.2020.3031392

    Article  Google Scholar 

  33. Saleh, M.M., Muhammad, N.A., Seman, N., Azmi, M.H.: Stochastic Geometric Energy Coverage Analysis in Millimeter Wave Cellular Networks. In: 2023 IEEE International Symposium On Antennas And Propagation (ISAP). pp. 1-2 (2023). https://doi.org/10.1109/ISAP57493.2023.10389089

Download references

Acknowledgements

This work was supported in part by the Ministry of Higher Education (MOHE) Malaysia under the Fundamental Research Grant Scheme (FRGS), (FRGS/1/2023/TK07/UTM)/02/12) and in part by the Higher Institution Centre of Excellence (HICoE) Grant (R.J130000.7809.4J613).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammed Mehdi Saleh or Nor Aishah Muhammad.

Appendices

Appendix A: Proof of Theorem 1

The ECP of the TUE is given by \(p(\tau )=\mathbb {P}({\mathcal {E}_h}>\tau )\), where \(\tau \) represents a predefined threshold and \({\mathcal {E}_h}\) is defined in (9). Based on (5) and (7), and according to the approximation in (4), which is given in [33], the inequality in \(\mathbb {P}({\mathcal {E}_h}>\tau )\) can be approximated as

$$\begin{aligned} p(\tau ) = \sum _{k=0}^{V} (-1)^k \left( {\begin{array}{c}V\\ k\end{array}}\right) \mathbb {E} \left[ \exp \left( -\hat{\mathcal {Y}} \left( P^L + I^L + I^N \right) \right) \right] , \nonumber \\ \end{aligned}$$
(A1)

where \(\hat{\mathcal {Y}}=\frac{\mathcal {Y}k}{\tau }\), \(\mathcal {Y}={V\left( V!\right) }^{-\frac{1}{V}}\), and to evaluate the expectation in (A1) such that

$$\begin{aligned}&\mathbb {E} \left[ \exp \left( -\hat{\mathcal {Y}} \left( P^L + I^L + I^N \right) \right) \right] \nonumber \\&\, {=} \mathbb {E} \left[ \exp \left( {-}\hat{\mathcal {Y}} P^L \right) \cdot \mathbb {E} \left[ \exp \left( {-}\hat{\mathcal {Y}} I^L \right) \right] \cdot \mathbb {E} \left[ \exp \left( {-}\hat{\mathcal {Y}} I^N \right) \right] \right] . \end{aligned}$$
(A2)

The inner expectation \(\mathbb {E}[\exp (-\hat{\mathcal {Y}} I^L)] \cdot \mathbb {E}[\exp (-\hat{\mathcal {Y}} I^N)]\) in (A2) represents the product of the expectations of the LOS and NLOS interference signals. Each of these expectations can be computed separately. The expectation \(\mathbb {E}[\exp (-\hat{\mathcal {Y}} I^L)]\) is derived as follows

$$\begin{aligned} f_{I}^L&= \mathbb {E} \left[ \exp \left( -\hat{\mathcal {Y}} I^L \right) \right] \nonumber \\ &{\mathop {=}\limits ^{(a)}} \mathbb {E}_{\phi } \left[ \prod _{i \in \Phi \setminus \{0\}} \mathbb {E}_{H_i^L} \left[ \exp \left( -\hat{\mathcal {Y}} p_t H_i^L D_i C r_i^{-\alpha L} \right) \right] \right] \nonumber \\ &{\mathop {=}\limits ^{(b)}} \exp \left( -\lambda _I \int _{\mathbb {R}^2} \left( 1 - \mathbb {E}_{H_i^L}\right. \right. \nonumber \\ &\quad \left. \left. \left[ \exp \left( -\hat{\mathcal {Y}} p_t H_i^L D_i C r_i^{-\alpha L} \right) \right] \right) r_i \, dr_i \right) \nonumber \\ &{\mathop {=}\limits ^{(c)}} \exp \left( {-}2 \pi \lambda _I \int _{r_0}^{R_B} \left( 1 {-} \mathbb {E}_{H_i^L}\right. \right. \nonumber \\ &\quad \left. \left. \left[ \exp \left( {-}\hat{\mathcal {Y}} p_t H_i^L D_i C r_i^{{-}\alpha L} \right) \right] \right) r_i \, dr_i \right) \nonumber \\ &{\mathop {=}\limits ^{(d)}} \exp \left( -2 \pi \lambda _I \int _{r_0}^{R_B} \left( 1 - \mathbb {E}_{D_i}\right. \right. \nonumber \\ &\quad \left. \left. \left[ \left( \frac{1}{1 + \hat{\mathcal {Y}} p_t D_i C r_i^{-\alpha L} g_L^{-1}} \right) ^{g_L} \right] \right) r_i \, dr_i \right) , \nonumber \\ \end{aligned}$$
(A3)

where (a) is obtained by substituting (7) and simplifying it further. (b) is derived by conditioning on \( r_i \) and employing the probability-generating functional (PGFL) of the PPP \(\Phi ^L\), where \(\lambda _I = \frac{\lambda _{BS}}{\sqrt{n_t}}\) [32]. In (c), we switch to polar coordinates, and (d) is derived using the fact that \(H_i^L\) follows a Nakagami distribution. We use the moment-generating function (MGF) of \(H_i^L\) with parameter \(g_L\), where the MGF of \(H_i^L\) is \(M_{H_i^L}(t) = \left( 1 - \frac{t}{g_L}\right) ^{-g_L}\), where \(t=\hat{\mathcal {Y}} p_t m C r_i^{-\alpha L}\).

In (A3), \(\mathbb {E}_{D_i}[\cdot ]\) denotes the expectation of the array gain of the i-th interfering link, which depends on the random variable \(D_i\). It is given by

$$\begin{aligned}&\mathbb {E}_{D_i} \left[ \left( \frac{1}{1 {+} \hat{\mathcal {Y}} p_t D_i C r_i^{-\alpha L} g_L^{-1}}\right) ^{g_L}\right] \nonumber \\ &\quad {=} p_1 \left( \frac{1}{1 + \hat{\mathcal {Y}} p_t M C r_i^{-\alpha L} g_L^{-1}}\right) ^{g_L} \nonumber \\&\qquad {+} p_2 \left( \frac{1}{1 + \hat{\mathcal {Y}} p_t m C r_i^{-\alpha L} g_L^{-1}}\right) ^{g_L}, \end{aligned}$$
(A4)

where \(p_1\) and \(p_2\) are the probabilities associated with the different possible values of \(D_i\), which are M and m, respectively. By substituting (A4) into (A3), the final expression for the expectation of the LOS interference signal is given by (11).

For the expectation \(\mathbb {E}[\exp (-\hat{\mathcal {Y}} I^N)]\), it can be obtained as follows

$$\begin{aligned} f_{I}^N&= \mathbb {E} \left[ \exp \left( -\hat{\mathcal {Y}} I^N \right) \right] \nonumber \\ &{=} \mathbb {E}_{\phi } \left[ \prod _{i \in \Phi ^N} \mathbb {E}_{H_i^N} \left[ \exp \left( -\hat{\mathcal {Y}} p_t H_i^N D_i C r_i^{-\alpha N} \right) \right] \right] \nonumber \\ &{=} \exp \left( -\lambda _I \int _{\mathbb {R}^2} \left( 1 - \mathbb {E}_{H_i^N} \left[ \exp \left( -\hat{\mathcal {Y}} p_t H_i^N D_i C r_i^{-\alpha N} \right) \right] \right) r_i \, dr_i \right) \nonumber \\ &{=} \exp \left( {-}2 \pi \lambda _I \int _{R_B}^{\infty } \left( 1 {-} \mathbb {E}_{H_i^N} \left[ \exp \left( {-}\hat{\mathcal {Y}} p_t H_i^N D_i C r_i^{{-}\alpha N} \right) \right] \right) r_i \, dr_i \right) \nonumber \\ &{\mathop {=}\limits ^{(a)}} \exp \left( -2 \pi \lambda _I \int _{R_B}^{\infty } \left( 1 - \mathbb {E}_{D_i} \left[ \frac{1}{1 + \hat{\mathcal {Y}} p_t D_i C r_i^{-\alpha N}} \right] \right) r_i \, dr_i \right) , \end{aligned}$$
(A5)

where (a) is derived using the fact that \( H_i^N \) follows an exponential distribution with mean 1. The Laplace transform of \( H_i^N \) is given by

$$\begin{aligned} \mathbb {E}_{H_i^N} \left[ \exp (-s H_i^N) \right] =&\int _{0}^{\infty } \exp (-s h) \exp (-h) dh \, \\ =&\int _{0}^{\infty } \exp \left( -(s+1)h\right) \, dh = \frac{1}{s+1}, \end{aligned}$$

where \( s \) is the Laplace variable. In this context, \( s = \hat{\mathcal {Y}} p_t D_i C r_i^{-\alpha N} \).

In (A5), \( \mathbb {E}_{D_i}[\cdot ] \) can be obtained as follows

$$\begin{aligned} \mathbb {E}_{D_i} \left[ \frac{1}{1 + \hat{\mathcal {Y}} p_t D_i C r_i^{-\alpha N}}\right]&= \left( \frac{p_1}{1 + \hat{\mathcal {Y}} p_t M C r_i^{-\alpha N}}\right) \nonumber \\&\quad + \left( \frac{p_2}{1 + \hat{\mathcal {Y}} p_t m C r_i^{-\alpha N} }\right) . \end{aligned}$$
(A6)

By substituting (A6) into (A5), the final expression for the expectation of the NLOS interference signal is given by (12).

Similarly, we can derive the expectation of the signal received from the serving LOS BS by the TUE as follows

$$\begin{aligned} f_{BS}^L&= \mathbb {E}\left[ \exp \left( -\hat{\mathcal {Y}} P^L\right) \right] \nonumber \\&{\mathop {=}\limits ^{(a)}} \mathbb {E}_{r_0, H_0^L} \left[ \exp \left( -\hat{\mathcal {Y}} p_t M H_0^L C r_0^{-\alpha L}\right) \right] \nonumber \\&{\mathop {=}\limits ^{(b)}} \mathbb {E}_{r_0} \left[ \left( \frac{1}{1 + \hat{\mathcal {Y}} p_t M C r_0^{-\alpha L} g_L^{-1}}\right) ^{g_L}\right] \nonumber \\&{\mathop {=}\limits ^{(c)}} 2 \pi \lambda _{BS} \int _{r_0=0}^{R_B} \left( \frac{1}{1 + \hat{\mathcal {Y}} p_t M C r_0^{-\alpha L} g_L^{-1}}\right) ^{g_L} \nonumber \\&\quad \times \frac{r_0 \exp \left( -\lambda _{BS} \pi r_0^2\right) }{1 - \exp \left( -\lambda _{BS} \pi R_B^2\right) } \, dr_0, \end{aligned}$$
(A7)

where (a) is obtained by substituting (5), (b) is derived using the fact that \(H_0^L\) follows a Nakagami distribution and the moment-generating function (MGF) of \(H_0^L\) with parameter \(g_L\), and (c) is obtained by determining the expectation \(\mathbb {E}_{r_0}\left[ \cdot \right] \) and substituting the pdf of \(r_0\) defined in (4). By substituting (11), (12), and (A7) into (A2), and subsequently into (A1), we obtain the final expression for the ECP of the TUE, as given in (10).

Appendix B: Proof of the closed-form expression of ECP

Assuming \(\alpha L = 2\) and \(g_L = 1\), and that the TUE can receive interference signals with the main beam (resulting in the power gain \(D_i = M\)), while excluding the NLOS-interfering signals \(f_{I}^N\) from (10), we can rewrite (10) as

$$\begin{aligned} \hat{p}(\tau ) = \sum _{k=0}^{V} (-1)^k \left( {\begin{array}{c}V\\ k\end{array}}\right) \mathcal {Q}, \end{aligned}$$
(B8)

where

$$\begin{aligned} \mathcal {Q} = \int _{0}^{R_B} f_{BS}^L(r_0) f_{I}^L(r_0) dr_0, \end{aligned}$$
(B9)

We begin by simplifying \( f_{I}^L(r_0) \) as follows

$$\begin{aligned} \mathcal {F}_{I}^L&= f_{I}^L(r_0) \nonumber \\ &{\mathop {=}\limits ^{(a)}}\exp \left( -\frac{AB}{\sqrt{n_t}} \int _{r_0^2 + A}^{R_B^2 + A} \frac{1}{v} \, dv \right) \nonumber \\ &{\mathop {=}\limits ^{(b)}} \left( \frac{R_B^2 + A}{r_0^2 + A} \right) ^{-\frac{AB}{\sqrt{n_t}}}, \end{aligned}$$
(B10)

where (a) is obtained by substituting \(A = \hat{\mathcal {Y}} p_t M C\) and \(B = \pi \lambda _{BS}\), and (b) is obtained by using the substitution \(v = r_i^2 + A\) and \(dv = 2 r_i \, dr_i\).

Now, let simplify \(f_{BS}^L(r_0)\) given in (A7) as follows

$$\begin{aligned} \mathcal {F}_{BS}^L&=f_{BS}^L(r_0)\nonumber \\&{\mathop {=}\limits ^{(a)}}\frac{2B r_0^3}{(1 - e^{-B R_B^2})(r_0^2 + A)} e^{-B r_0^2}. \end{aligned}$$
(B11)

where (a) is obtained by substituting \( A \), \(B \) and simplifying further. By substituting (B10) and (B11) into (B9) and simplifying it further by performing a change of variables \(t=B\left( r_0^{\ 2}+A\right) \), \(dt=2Br_0dr_0\), so we can rewrite (B9) as

$$\begin{aligned} \mathcal {Q} = \frac{(R_B^2 + A)^{-\frac{AB}{\sqrt{n_t}}} e^{AB}}{(1 - e^{-B R_B^2})} \left( B^{-\frac{AB}{\sqrt{n_t}}} I_1 - AB^{\frac{\sqrt{n_t} - AB}{\sqrt{n_t}}} I_2\right) , \nonumber \\ \end{aligned}$$
(B12)

where expression of \(I_1\) and \(I_2\) in (B12) can be derived, respectively, as

$$\begin{aligned} I_1= & \int _{t=AB}^{B(R_B^2+A)} t^{\frac{AB}{\sqrt{n_t}}} e^{-t} \, dt, \end{aligned}$$
(B13)
$$\begin{aligned} I_2= & \int _{t=AB}^{B\left( {R_B}^2+A\right) } t^{\left( \frac{AB}{\sqrt{n_t}}-1\right) } e^{-t} dt. \end{aligned}$$
(B14)

Recognizing that the integrals in (B13) and (B14) align with the definition of the incomplete gamma function, \(\int _{\mathcal {U}}^{\mathcal {V}}t^{s-1}e^{-t}dt=\left| \Gamma (s\,\mathcal {V})-\Gamma (s\,\mathcal {U})\right| \). The integrals in (B13) and (B14) can be, respectively, expressed as in (14) and (15) using the definition of the incomplete gamma function. By substituting (14) and (15) into (B12), and then into (B9), we can express the closed-form of ECP in (10) as in (13).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, M.M., Muhammad, N.A., Seman, N. et al. Performance Analysis of Energy Harvesting in Dense Urban Millimeter-Wave Cellular Network Using Stochastic Geometry. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09766-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09766-0

Keywords