Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Approximation in vanishing rearrangement-invariant Morrey spaces and applications

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

Morrey type space built on rearrangement-invariant Banach function space where the set of smooth functions with compact support is a dense set of this space is introduced in this paper. By using the denseness of the set of smooth functions with compact support, we obtain the oscillation and variation inequalities of Riesz transforms on this Morrey type space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida, A., Samko, S.: Approximation in Morrey spaces. J. Funct. Anal. 272, 2392–2411 (2017)

    Article  MathSciNet  Google Scholar 

  2. Almeida, A., Samko, S.: Approximation in generalized Morrey spaces. Georgian Math. J. 25, 155–168 (2018)

    Article  MathSciNet  Google Scholar 

  3. Bennett, C., Sharpley, R.: Interpolations of operators. Academic Press, New York (1988)

    MATH  Google Scholar 

  4. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces. Birkháuser, Basel (2013)

    Book  Google Scholar 

  5. Deringoz, F., Guliyev, V., Ragusa, M.A.: Intrinsic square functions on vanishing generalized Orlicz–Morrey spaces. Set Value Var. Anal. 25, 807–828 (2017)

    Article  MathSciNet  Google Scholar 

  6. Gala, S., Guo, Z., Ragusa, M.A.: A remark on the regularity criterion of Boussinesq equations with zero heat conductivity. Appl. Math. Lett. 27, 70–73 (2014)

    Article  MathSciNet  Google Scholar 

  7. Gala, S., Ragusa, M.A., Sawano, Y., Tanaka, H.: Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz–Morrey spaces. Appl. Anal. 93(2), 356–368 (2014)

    Article  MathSciNet  Google Scholar 

  8. Gala, S., Sawano, Y., Tanaka, H.: A remark on two generalized Orlicz–Morrey spaces. J. Approx. Theory 198, 1–9 (2015)

    Article  MathSciNet  Google Scholar 

  9. García-Cuerva, J., de Francia, R.: J.L. Weighted Norm Inequalities and Related Topics. North-Holland, Amsterdam (1985)

    MATH  Google Scholar 

  10. Gillespie, T., Torres, J.: Dimension free estimates for the oscillation of Riesz transforms. Israel J. Math. 141, 125–144 (2004)

    Article  MathSciNet  Google Scholar 

  11. Guliyev, V.S., Omarova, M.N., Ragusa, M.A., Scapellato, A.: Commutators and generalized local Morrey spaces. J. Math. Anal. Appl. 457(2), 1388–1402 (2018)

    Article  MathSciNet  Google Scholar 

  12. Ho, K.-P.: Sobolev–Fawerth embedding of Triebel–Lizorkin–Morrey–Lorentz spaces and fractional integral operator on Hardy type spaces. Math. Nachr. 287, 1674–1686 (2014)

    Article  MathSciNet  Google Scholar 

  13. Ho, K.-P.: Hardy’s inequality and Hausdorff operators on rearrangement-invariant Morrey spaces. Publ. Math. Debr. 88, 201–215 (2016)

    Article  MathSciNet  Google Scholar 

  14. Ho, K.-P.: Extrapolation, John–Nirenberg inequalities and characterizations of \(BMO\) in terms of Morrey type spaces. Rev. Mat. Complut. 30, 487–505 (2017)

    Article  MathSciNet  Google Scholar 

  15. Ho, K.-P.: Maximal estimates of Schrödinger equations on rearrangement invariant Sobolev spaces. Numer. Funct. Anal. Optim. https://doi.org/10.1080/01630563.2018.1487977

  16. Ho, K.-P.: Sublinear operators on block type space Sci. Chin. Math. (to appear)

  17. Ho, K.-P.: Fractional integral operators with homogeneous kernels on generalized Lorentz–Morrey spaces (preprint)

  18. Ho, K.-P.: Sublinear operators on weighted Hardy spaces with variable exponents. Forum Math. https://doi.org/10.1515/forum-2018-0142

  19. Ho, K.-P.: Interpolation of sublinear operators which map into Riesz spaces and applications. Proc. Am. Math. Soc. https://doi.org/10.1090/proc/14506

  20. Ho, K.-P.: Sublinear operators on radial rearrangement-invariant quasi-Banach function spaces. Acta Math. Hungar. (to appear)

  21. Li, X., Yang, D.: Boundedness of some sublinear operators on Herz spaces. Ill. J. Math. 40, 484–501 (1996)

    Article  MathSciNet  Google Scholar 

  22. Liu, L., Yang, D.: Boundedness of sublinear operators in Triebel–Lizorkin spaces via atoms. Stud. Math. 190, 163–183 (2009)

    Article  MathSciNet  Google Scholar 

  23. Lu, S., Yabuta, K., Yang, D.: Boundedness of some sublinear operators in weighted Herz-type spaces. Kodai J. Math. 23, 391–410 (2000)

    Article  MathSciNet  Google Scholar 

  24. Ma, T., Torrea, J., Xu, Q.: Weighted variation inequalities for differential operators and singular integrals in higher dimensions. Sci. Chin. Math. 60, 1419–1442 (2017)

    Article  MathSciNet  Google Scholar 

  25. Masta, A.A., Gunawan, H., Setya-Budhi, W.: On inclusion properties of two versions of Orlicz–Morrey spaces. Mediterr. J. Math. 14, 228 (2017). https://doi.org/10.1007/s00009-017-1030-7

    Article  MathSciNet  MATH  Google Scholar 

  26. Nakai, E.: Orlicz–Morrey spaces and Hardy–Littlewood maximal function. Stud. Math. 188, 193–221 (2008)

    Article  MathSciNet  Google Scholar 

  27. Ragusa, M.A.: Commutators of fractional integral operators on vanishing-Morrey spaces. J. Glob. Optim. 46, 361–368 (2008)

    Article  MathSciNet  Google Scholar 

  28. Ragusa, M.A.: Embeddings for Morrey–Lorentz Spaces. J. Optim. Theory Appl. 154, 491–499 (2012)

    Article  MathSciNet  Google Scholar 

  29. Ragusa, M.A., Scapellato, A.: Mixed Morrey spaces and their applications to partial differential equations. Nonlinear Anal. Theory Methods Appl. 151, 51–65 (2017)

    Article  MathSciNet  Google Scholar 

  30. Sawano, Y., Sugano, S., Tanaka, H.: Orlicz–Morrey spaces and fractional operators. Potential Anal. 36, 517–556 (2012)

    Article  MathSciNet  Google Scholar 

  31. Samko, N.: Maximal, potential and singular operators in vanishing generalized Morrey spaces. J. Glob. Optim. 57, 1385–1399 (2013)

    Article  MathSciNet  Google Scholar 

  32. Yang, D., Zhou, Y.: A bounded criterion via atoms for linear operators in Hardy spaces. Constr. Approx. 29, 207–218 (2009)

    Article  MathSciNet  Google Scholar 

  33. Yang, D., Zhou, Y.: Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms. J. Math. Anal. Appl. 339, 622–635 (2008)

    Article  MathSciNet  Google Scholar 

  34. Zhang, J., Wu, H.X.: Weighted oscillation and variation inequalities for singular integrals and commutators satsifying Hörmander type conditions. Acta Math Sin. Engl. Ser. 33, 1397–1420 (2017)

    Article  MathSciNet  Google Scholar 

  35. Zhang, J., Zheng, S.: Weighted Lorentz and Lorentz–Morrey estimates to viscosity solutions of fully nonlinear elliptic equations. Complex Var. Elliptic Equ. (2017). https://doi.org/10.1080/17476933.2017.1357707

  36. Zhou, Y.: Boundedness of sublinear operators in Herz type Hardy spaces. Taiwan. J. Math. 13, 983–996 (2009)

    Article  MathSciNet  Google Scholar 

  37. Zorko, C.: Morrey spaces. Proc. Am. Math. Soc. 98, 586–592 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for her/his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwok-Pun Ho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, KP. Approximation in vanishing rearrangement-invariant Morrey spaces and applications. RACSAM 113, 2999–3014 (2019). https://doi.org/10.1007/s13398-019-00668-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-019-00668-7

Keywords

Mathematics Subject Classification