Abstract
Morrey type space built on rearrangement-invariant Banach function space where the set of smooth functions with compact support is a dense set of this space is introduced in this paper. By using the denseness of the set of smooth functions with compact support, we obtain the oscillation and variation inequalities of Riesz transforms on this Morrey type space.
Similar content being viewed by others
References
Almeida, A., Samko, S.: Approximation in Morrey spaces. J. Funct. Anal. 272, 2392–2411 (2017)
Almeida, A., Samko, S.: Approximation in generalized Morrey spaces. Georgian Math. J. 25, 155–168 (2018)
Bennett, C., Sharpley, R.: Interpolations of operators. Academic Press, New York (1988)
Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces. Birkháuser, Basel (2013)
Deringoz, F., Guliyev, V., Ragusa, M.A.: Intrinsic square functions on vanishing generalized Orlicz–Morrey spaces. Set Value Var. Anal. 25, 807–828 (2017)
Gala, S., Guo, Z., Ragusa, M.A.: A remark on the regularity criterion of Boussinesq equations with zero heat conductivity. Appl. Math. Lett. 27, 70–73 (2014)
Gala, S., Ragusa, M.A., Sawano, Y., Tanaka, H.: Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz–Morrey spaces. Appl. Anal. 93(2), 356–368 (2014)
Gala, S., Sawano, Y., Tanaka, H.: A remark on two generalized Orlicz–Morrey spaces. J. Approx. Theory 198, 1–9 (2015)
García-Cuerva, J., de Francia, R.: J.L. Weighted Norm Inequalities and Related Topics. North-Holland, Amsterdam (1985)
Gillespie, T., Torres, J.: Dimension free estimates for the oscillation of Riesz transforms. Israel J. Math. 141, 125–144 (2004)
Guliyev, V.S., Omarova, M.N., Ragusa, M.A., Scapellato, A.: Commutators and generalized local Morrey spaces. J. Math. Anal. Appl. 457(2), 1388–1402 (2018)
Ho, K.-P.: Sobolev–Fawerth embedding of Triebel–Lizorkin–Morrey–Lorentz spaces and fractional integral operator on Hardy type spaces. Math. Nachr. 287, 1674–1686 (2014)
Ho, K.-P.: Hardy’s inequality and Hausdorff operators on rearrangement-invariant Morrey spaces. Publ. Math. Debr. 88, 201–215 (2016)
Ho, K.-P.: Extrapolation, John–Nirenberg inequalities and characterizations of \(BMO\) in terms of Morrey type spaces. Rev. Mat. Complut. 30, 487–505 (2017)
Ho, K.-P.: Maximal estimates of Schrödinger equations on rearrangement invariant Sobolev spaces. Numer. Funct. Anal. Optim. https://doi.org/10.1080/01630563.2018.1487977
Ho, K.-P.: Sublinear operators on block type space Sci. Chin. Math. (to appear)
Ho, K.-P.: Fractional integral operators with homogeneous kernels on generalized Lorentz–Morrey spaces (preprint)
Ho, K.-P.: Sublinear operators on weighted Hardy spaces with variable exponents. Forum Math. https://doi.org/10.1515/forum-2018-0142
Ho, K.-P.: Interpolation of sublinear operators which map into Riesz spaces and applications. Proc. Am. Math. Soc. https://doi.org/10.1090/proc/14506
Ho, K.-P.: Sublinear operators on radial rearrangement-invariant quasi-Banach function spaces. Acta Math. Hungar. (to appear)
Li, X., Yang, D.: Boundedness of some sublinear operators on Herz spaces. Ill. J. Math. 40, 484–501 (1996)
Liu, L., Yang, D.: Boundedness of sublinear operators in Triebel–Lizorkin spaces via atoms. Stud. Math. 190, 163–183 (2009)
Lu, S., Yabuta, K., Yang, D.: Boundedness of some sublinear operators in weighted Herz-type spaces. Kodai J. Math. 23, 391–410 (2000)
Ma, T., Torrea, J., Xu, Q.: Weighted variation inequalities for differential operators and singular integrals in higher dimensions. Sci. Chin. Math. 60, 1419–1442 (2017)
Masta, A.A., Gunawan, H., Setya-Budhi, W.: On inclusion properties of two versions of Orlicz–Morrey spaces. Mediterr. J. Math. 14, 228 (2017). https://doi.org/10.1007/s00009-017-1030-7
Nakai, E.: Orlicz–Morrey spaces and Hardy–Littlewood maximal function. Stud. Math. 188, 193–221 (2008)
Ragusa, M.A.: Commutators of fractional integral operators on vanishing-Morrey spaces. J. Glob. Optim. 46, 361–368 (2008)
Ragusa, M.A.: Embeddings for Morrey–Lorentz Spaces. J. Optim. Theory Appl. 154, 491–499 (2012)
Ragusa, M.A., Scapellato, A.: Mixed Morrey spaces and their applications to partial differential equations. Nonlinear Anal. Theory Methods Appl. 151, 51–65 (2017)
Sawano, Y., Sugano, S., Tanaka, H.: Orlicz–Morrey spaces and fractional operators. Potential Anal. 36, 517–556 (2012)
Samko, N.: Maximal, potential and singular operators in vanishing generalized Morrey spaces. J. Glob. Optim. 57, 1385–1399 (2013)
Yang, D., Zhou, Y.: A bounded criterion via atoms for linear operators in Hardy spaces. Constr. Approx. 29, 207–218 (2009)
Yang, D., Zhou, Y.: Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms. J. Math. Anal. Appl. 339, 622–635 (2008)
Zhang, J., Wu, H.X.: Weighted oscillation and variation inequalities for singular integrals and commutators satsifying Hörmander type conditions. Acta Math Sin. Engl. Ser. 33, 1397–1420 (2017)
Zhang, J., Zheng, S.: Weighted Lorentz and Lorentz–Morrey estimates to viscosity solutions of fully nonlinear elliptic equations. Complex Var. Elliptic Equ. (2017). https://doi.org/10.1080/17476933.2017.1357707
Zhou, Y.: Boundedness of sublinear operators in Herz type Hardy spaces. Taiwan. J. Math. 13, 983–996 (2009)
Zorko, C.: Morrey spaces. Proc. Am. Math. Soc. 98, 586–592 (1986)
Acknowledgements
The author would like to thank the referee for her/his valuable suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ho, KP. Approximation in vanishing rearrangement-invariant Morrey spaces and applications. RACSAM 113, 2999–3014 (2019). https://doi.org/10.1007/s13398-019-00668-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13398-019-00668-7
Keywords
- Approximation
- Morrey spaces
- Rearrangement-invariant
- Oscillation and variation inequalities
- Sublinear operator
- Extrapolation