Abstract
The purpose of this paper is to introduce iterative algorithm solving split system of fixed point set constraint minimization problem given as a task of finding a fixed point \(\bar{x}\) of a strictly pseudocontractive mapping and is also a common minimizer point of finite family of proper, lower semicontinuous convex functions and whose image \(A(\bar{x})\) under a bounded linear operator A is also common minimizer point of another finite family of proper, lower semicontinuous convex functions. Our algorithm is designed by introducing a setting that will allow us avoid the necessity of prior knowledge of the operator norm to determine the step sizes. Some applications and numerical experiment is given to analyse the efficiency of our algorithm.
Similar content being viewed by others
References
Abbas, M., AlShahrani, M., Ansari, Q., Iyiola, O.S., Shehu, Y.: Iterative methods for solving proximal split minimization problems. Numer. Algorithms 78(1), 1–23 (2018)
Acedo, G.L., Xu, H.K.: Iterative methods for strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 67(7), 2258–2271 (2007)
Alves, M.M., Svaiter, B.F.: A proximal-newton method for unconstrained convex optimization in Hilbert spaces. Optimization 67(1), 67–82 (2018)
Bauschke, H.H., Combettes, P.L., et al.: Convex analysis and monotone operator theory in Hilbert spaces, vol. 408. Springer, Berlin (2011)
Brezis, H.: Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, vol. 5. Elsevier, New York (1973)
Buong, N.: Iterative algorithms for the multiple-sets split feasibility problem in Hilbert spaces. Numer. Algorithms 76(3), 783–798 (2017)
Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18(2), 441 (2002)
Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. arXiv preprint arXiv:1108.5953 (2011)
Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: The split feasibility model leading to a unified approach for inversion problems in intensity-modulated radiation therapy. Technical Report 20 April: Department of Mathematics, University of Haifa, Israel (2005)
Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51(10), 2353 (2006)
Censor, Y., Elfving, T.: A multiprojection algorithm using bregman projections in a product space. Numer. Algorithms 8(2), 221–239 (1994)
Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21(6), 2071 (2005)
Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59(2), 301–323 (2012)
Censor, Y., Motova, A., Segal, A.: Perturbed projections and subgradient projections for the multiple-sets split feasibility problem. J. Math. Anal. Appl. 327(2), 1244–1256 (2007)
Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. 16(2), 587–600 (2009)
Chidume, C.E., Abbas, M., Ali, B.: Convergence of the mann iteration algorithm for a class of pseudocontractive mappings. Appl. Math. Comput. 194(1), 1–6 (2007)
Cholamjiak, P., Suantai, S.: Strong convergence for a countable family of strict pseudocontractions in q-uniformly smooth Banach spaces. Comput. Math. Appl. 62(2), 787–796 (2011)
Combettes, P.L., Hirstoaga, S.A., et al.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6(1), 117–136 (2005)
Gill, P.E., Murray, W.: Newton-type methods for unconstrained and linearly constrained optimization. Math. Program. 7(1), 311–350 (1974)
Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory, vol. 28. Cambridge University Press, Cambridge (1990)
He, Z.: The split equilibrium problem and its convergence algorithms. J. Inequal. Appl. 2012(1), 162 (2012)
Hendrickx, J.M., Olshevsky, A.: Matrix p-Norms are NP-Hard to Approximate if p=1,2,\(\infty \). SIAM J. Matrix Anal. Appl. 31(5), 2802–2812 (2010)
Hieua, D.V.: Parallel extragradient-proximal methods for split equilibrium problems. Math. Model. Anal. 21(4), 478–501 (2016)
Lemaire, B.: Which fixed point does the iteration method select? In: Recent Advances in Optimization, pp. 154–167. Springer (1997)
López, G., Martín-Márquez, V., Wang, F., Xu, H.K.: Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl. 28(8), 085004 (2012)
Marino, G., Xu, H.K.: Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl. 329(1), 336–346 (2007)
Martinet, B.: Brève communication. régularisation d’inéquations variationnelles par approximations successives. RAIRO 4(R3), 154–158 (1970)
Martinet, B.: Détermination approchée d’un point fixe d’une application pseudo-contractante. CR Acad. Sci. Paris 274(2), 163–165 (1972)
Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8(3), 367 (2007)
Moudafi, A.: Split monotone variational inclusions. J. Optim. Theory Appl. 150(2), 275–283 (2011)
Moudafi, A., Thakur, B.: Solving proximal split feasibility problems without prior knowledge of operator norms. Optim. Lett. 8(7), 2099–2110 (2014)
Qu, B., Xiu, N.: A note on the CQ algorithm for the split feasibility problem. Inverse Probl. 21(5), 1655 (2005)
Rockafellar, R.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149(1), 75–88 (1970)
Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)
Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer Science & Business Media, Berlin (2009)
Shehu, Y., Cai, G., Iyiola, O.S.: Iterative approximation of solutions for proximal split feasibility problems. Fixed Point Theory Appl. 2015(1), 123 (2015)
Shehu, Y., Iyiola, O.S.: Strong convergence result for proximal split feasibility problem in Hilbert spaces. Optimization 66(12), 2275–2290 (2017)
Shehu, Y., Iyiola, O.S.: Accelerated hybrid viscosity and steepest-descent method for proximal split feasibility problems. Optimization 67(4), 475–492 (2018)
Shehu, Y., Iyiola, O.S.: Nonlinear iteration method for proximal split feasibility problems. Math. Methods Appl. Sci. 41, 781–802 (2018)
Shehu, Y., Ogbuisi, F.U.: Convergence analysis for proximal split feasibility problems and fixed point problems. J. Appl. Math. Comput. 48(1–2), 221–239 (2015)
Takahashi, S., Takahashi, W., Toyoda, M.: Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. 147(1), 27–41 (2010)
Xu, H.K.: A variable krasnosel’skii-mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22(6), 2021 (2006)
Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26(10), 105018 (2010)
Yang, Q.: The relaxed CQ algorithm solving the split feasibility problem. Inverse Probl. 20(4), 1261 (2004)
Zhou, H.: Convergence theorems of fixed points for \(\kappa \)-strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 69(2), 456–462 (2008)
Acknowledgements
This research is partially supported by Naresuan university. The authors would like to thank the reviewers for their thoughtful comments and efforts towards improving our paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gebrie, A.G., Wangkeeree, R. Parallel proximal method of solving split system of fixed point set constraint minimization problems. RACSAM 114, 13 (2020). https://doi.org/10.1007/s13398-019-00758-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s13398-019-00758-6
Keywords
- Minimization problems
- \(\kappa \)-Strictly pseudocontractive mapping
- Fixed point
- Split feasibility problem
- Moreau-Yosida approximate