Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

From the Hahn–Banach extension theorem to the isotonicity of convex functions and the majorization theory

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

The property of isotonicity of a continuous convex function on the positive cone is characterized via subdifferentials. This is used to illustrate a new generalization of the Hardy–Littlewood–Pólya inequality of majorization to the case of functions of a vector variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovich, S., Persson, L.-E., Pečarić, J., Varošanec, S.: General inequalities via isotonic subadditive functionals. Math. Inequal. Appl. 10, 15–28 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Amann, H.: Multiple positive fixed points of asymptotically linear maps. J. Func. Anal. 17, 174–213 (1974)

    MathSciNet  MATH  Google Scholar 

  3. Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SlAM Rev. 18, 620–709 (1976)

    MathSciNet  MATH  Google Scholar 

  4. Andô, T.: On fundamental properties of a Banach space with a cone. Pac. J. Math. 12, 1163–1169 (1962)

    MathSciNet  MATH  Google Scholar 

  5. Bayart, F., Matheron, É.: Dynamics of linear operators. Cambridge Tracts in Mathematics 179. Cambridge University Press, Cambridge (2009)

  6. Bogachev, S.: Measure Theory, vol. 2. Springer, Berlin (2007)

    MATH  Google Scholar 

  7. Borwein, J.M., Vanderwerff, J.: Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedia of Mathematics and Its Applications 109. Cambridge University Press, Cambridge (2010)

  8. Buskes, G.: The Hahn–Banach theorem surveyed. Dissertationes Math. (Rozprawy Mat.) 327, 1–49 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Choquet, G.: Theory of capacities. Annales de l’ Institut Fourier 5, 131–295 (1954)

    MathSciNet  MATH  Google Scholar 

  10. Davies, E.B.: The structure and ideal theory of the pre-dual of a Banach lattice. Trans. Am. Math. Soc. 131, 544–555 (1968)

    MATH  Google Scholar 

  11. Dellacherie, C.l.: Quelques commentaires sur les prolongements de capacités. Séminaire Probabilités V, Strasbourg, Lecture Notes in Math. vol. 191. Springer, Berlin and New York (1970)

  12. Denneberg, D.: Non-Additive Measure and Integral. Kluwer Academic Publisher, Dordrecht (1994)

    MATH  Google Scholar 

  13. Feldman, M.M.: Sublinear operators defined on a cone. Siber. Math. J. 16, 1005–1015 (1975)

    MathSciNet  Google Scholar 

  14. Gal, S.G.: Uniform and pointwise quantitative approximation by Kantorovich–Choquet type integral operators with respect to monotone and submodular set functions. Mediterr. J. Math. 14, 205–216 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Gal, S.G., Niculescu, C.P.: A Nonlinear extension of Korovkin’s theorem. Preprint arXiv:2003.00002 February 27, (2020)

  16. Gal, S.G., Niculescu, C.P.: A note on the Choquet type operators. Preprint arXiv:2003.1430 April 1, (2020)

  17. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  18. Hörmander, L.: Notions of Convexity. Reprint of the 1994 edition. Modern Birkhäuser Classics, Birkhäuser, Boston (2007)

  19. Ioffe, A.D., Levin, V.L.: Subdifferentials of convex functions. Tr. Mosk. Mat. Obs. 26, 3–73 (1972)

    MathSciNet  Google Scholar 

  20. Kantorovich, L.V.: On semi-ordered linear spaces and their applications to the theory of linear operators. Dokl. Akad. Nauk 4, 11–14 (1935)

    Google Scholar 

  21. Kusraev, A.G.: Dominated Operators. Springer, Berlin (2000)

    MATH  Google Scholar 

  22. Kusraev, A.G., Kutateladze S.S.: Subdifferentials: Theory and Applications. Mathematics and its Applications, vol. 323, Kluwer Academic Publishers Group, Dordrecht (1995)

  23. Kutateladze, S.S.: Convex Operators. Russ. Math. Surveys 34(1), l8l–214 (1979)

    MathSciNet  Google Scholar 

  24. Levin, V.L.: Subdifferentials of convex mappings and composite functions. Siber. Math. J. 13, 903–909 (1972)

    MathSciNet  MATH  Google Scholar 

  25. Linke, YuE: On support sets of sublinear operators. Dokl. Akad. Nauk 207(3), 531–533 (1972)

    MathSciNet  MATH  Google Scholar 

  26. Mesiar, R., Li, J., Pap, E.: The Choquet integral as Lebesgue integral and related inequalities. Kybernetika 46(6), 1098–1107 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Meyer-Nieberg, P.: Banach Lattices. Springer, Berlin (1991)

    MATH  Google Scholar 

  28. Namioka, I.: Partially ordered linear topological spaces. Mem. Am. Math. Soc, No. 24 (1957)

  29. Niculescu, C.P., Persson, L.-E.: Convex Functions and their Applications. A Contemporary Approach, 2nd Ed., CMS Books in Mathematics vol. 23, Springer, New York (2018)

  30. Olteanu, O.: Convexité et prolongement d’opérateurs linéaires. C. R. Acad. Sci. Paris, Série A 286, 511–514 (1978)

    MATH  Google Scholar 

  31. Olteanu, O.: Théorèmes de prolongement d’opérateurs linéaires. Rev. Roumaine Math. Pures Appl. 28(10), 953–983 (1983)

    MathSciNet  MATH  Google Scholar 

  32. Phelps, R.R.: Convex Functions, Monotone Operators, and Differentiability, Second Edition. Lecture Notes in Math. No. 1364, Springer, Berlin (1993)

  33. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series 28, Princeton University Press, Princeton, New Jersey (1970)

  34. Rubinov, A.M.: Sublinear functionals defined on a cone. Siber. Math. J. 11, 327–336 (1970)

    MathSciNet  MATH  Google Scholar 

  35. Rubinov, A.M.: Sublinear operators and their applications. Russ. Math. Surveys 32(4), 115–175 (1977)

    MathSciNet  MATH  Google Scholar 

  36. Schaefer, H.H., Wolff, M.P.: Topological Vector Spaces. Graduate Texts in Mathematics 3, Second Edition. Springer, New York (1999)

  37. Simon, B.: Convexity. An Analytic Viewpoint. Cambridge Tracts in Mathematics 187, Cambridge University Press, Cambridge (2011)

  38. Valadier, M.: Sous-différentiabilité de fonctions convexes à valeurs dans un espace vectoriel ordonné. Math. Scand. 30, 65–74 (1972)

    MathSciNet  MATH  Google Scholar 

  39. Wang, Z., Klir, G.J.: Generalized Measure Theory. Springer, New York (2009)

    MATH  Google Scholar 

  40. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co., River Edge, NJ (2002)

    MATH  Google Scholar 

  41. Zowe, J.: Sandwich theorems for convex operators with values in an ordered vector space. J. Math. Anal. Appl. 66, 282–296 (1978)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Stefan Cobzas and Professor Gabriel Prajitura for several improvements on the original version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin P. Niculescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niculescu, C.P., Olteanu, O. From the Hahn–Banach extension theorem to the isotonicity of convex functions and the majorization theory. RACSAM 114, 171 (2020). https://doi.org/10.1007/s13398-020-00905-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-020-00905-4

Keywords

Mathematics Subject Classification