Abstract
Harmonic oscillator in noncommutative two-dimensional lattice is investigated. Using the properties of non-differential calculus and its applications to quantum mechanics, we provide the eigenvalues and eigenfunctions of the corresponding Hamiltonian. First, we consider the case of ordinary quantum mechanics, and we point out the thermodynamic properties of the model. Then we consider the same question when both coordinates and momenta are noncommutative.
Similar content being viewed by others
References
P. Jizba, H. Kleinert, F. Scardigli, J. Phys. Conf. Ser. 306, 012026 (2011). https://doi.org/10.1088/1742-6596/306/1/012026
P. Jizba, H. Kleinert, F. Scardigli, AIP Conf. Proc. 1446, 181 (2012). https://doi.org/10.1063/1.4727995
P. Jizba, H. Kleinert, F. Scardigli, Phys. Rev. D. 81, 084030 (2010). https://doi.org/10.1103/PhysRevD.81.084030. arXiv:0912.2253 [hep-th]
J.A. Wheeler, K.W. Ford. (New York, W W Norton and Co Inc., 2018)
K.G. Wilson, Phys. Rev, D. 10, 2445 (1974). https://doi.org/10.1103/PhysRevD.10.2445
A. Amador, J.S. Hoye, K. Olaussen, arXiv:1610.05284 [hep-th]
M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001). https://doi.org/10.1103/RevModPhys.73.977 [hep-th/0106048]
N. Seiberg, E. Witten, JHEP. 9909, 032 (1999). https://doi.org/10.1088/1126-6708/1999/09/032 [hep-th/9908142]
R.J. Szabo, . Phys. Rept. 378, 207 (2003). https://doi.org/10.1016/S0370-1573(03)00059-0 [hep-th/0109162]
S. Hellerman, M. Van Raamsdonk, JHEP. 0110, 039 (2001). https://doi.org/10.1088/1126-6708/2001/10/039 [hep-th/0103179]
P.A. Horvathy, hep-th/0307175
O.F. Dayi, A. Jellal, J. Math. Phys. 43, 4592 (2002). https://doi.org/10.1063/1.1504484 [hep-th/0111267]
F.G. Scholtz, B. Chakraborty, S. Gangopadhyay, J. Govaerts, J. Phys. A. 38, 9849 (2005). https://doi.org/10.1088/0305-4470/38/45/008 [cond-mat/0509331 [cond-mat.mes-hall]]
S. Doplicher, K. Fredenhagen, J.E. Roberts, Commun. Math. Phys. 172, 187 (1995). [hep-th/0303037]
D.J. Gross, P.F. Mende, Nucl. Phys. B. 303, 407 (1988). https://doi.org/10.1016/0550-3213(88)90390-2
E.M.F. Curado, M.A. Rego-Monteiro, H.N. Nazareno, . Phys. Rev. A. 64, 012105 (2001). https://doi.org/10.1103/PhysRevA.64.012105 [hep-th/0012244]
V.E. Tarasov, J. Phys. A. 47, 355204 (2014). https://doi.org/10.1088/1751-8113/47/35/355204
T.G. Dedovich, M.V. Tokarev, Phys. Part. Nucl. Lett. 13 (2), 169 (2016). https://doi.org/10.1134/S1547477116020060
J. Th‘urigen, arXiv:1510.08706 [gr-qc]
J.H. He, Int. J. Theor. Phys. 53(11), 3698 (2014). https://doi.org/10.1007/s10773-014-2123-8
M.N. Chernodub, S. Ouvry, Phys. Rev. E. 92(4), 042102 (2015). https://doi.org/10.1103/PhysRevE.92.042102. arXiv:1504.02269 [cond-mat.stat-mech]
J. Jurkiewicz, J. Wosiek, Nucl. Phys. B. 135, 416 (1978). https://doi.org/10.1016/0550-3213(78)90346-2
S.D. Drell, M. Weinstein, S. Yankielowicz, Phys. Rev. D. 16, 1769 (1977). https://doi.org/10.1103/PhysRevD.16.1769
C. Bastos, A.E. Bernardini, O. Bertolami, N. Costa Dias, J. Nuno Prata, Phys. Rev. D. 93(10), 104055 (2016). arXiv:1512.03792 [quant-ph]
J. Jurkiewicz, J. Wosiek, Nucl. Phys. B. 145, 445 (1978). https://doi.org/10.1016/0550-3213(78)90095-0
J. Zak, Phys. Rev. B. 21, 3345 (1980). https://doi.org/10.1103/PhysRevB.21.3345
M.C. Gutzwiller, Annals Phys. 133, 304 (1981). https://doi.org/10.1016/0003-4916(81)90253-0
H.S. Snyder, Phys. Rev. 71, 38 (1947). https://doi.org/10.1103/PhysRev.71.38
C.N. Yang, Phys. Rev. 72, 874 (1947). https://doi.org/10.1103/PhysRev.72.874
C.P. Sun, H.C. Fu, J. Phys. A. 22, L983 (1989). https://doi.org/10.1088/0305-4470/22/21/001
E.G. Floratos, Nucl. Phys. Proc. Suppl. 22A, 144 (1991). https://doi.org/10.1016/0920-5632(91)90361-H
M. Chaichian, D. Ellinas, P. Kulish, Phys. Rev. Lett. 65, 980 (1990). https://doi.org/10.1103/PhysRevLett.65.980
E. Celeghini, T.D. Palev, M. Tarlini, Mod. Phys. Lett. B. 5, 187 (1991). https://doi.org/10.1142/S021798499100023X
W.B. Schmidke, J. Wess, B. Zumino, Z. Phys. C. 52, 471 (1991). https://doi.org/10.1007/BF01559443
D. Ellinas, Phys. Rev. A. 45, 3358 (1992). https://doi.org/10.1103/PhysRevA.45.3358
D.V. Boulatov, Int. J. Mod, Phys. A. 8, 3139 (1993). https://doi.org/10.1142/S0217751X93001259 [hep-th/9210032]
M. Valiente, J. Phys. A. 44, 465303 (2011). https://doi.org/10.1088/1751-8113/44/46/465303
D. Mehta, A. Sternbeck, L. von Smekal, A.G. Williams, PoS QCD -TNT09, 025. arXiv:0912.0450 [hep-lat] (2009)
D. Mehta, M. Kastner, Annals Phys. 326, 1425 (2011). https://doi.org/10.1016/j.aop.2010.12.016. arXiv:1010.5335 [cond-mat.stat-mech]
Y. Li, Phys. Rev. B. 91(19), 195133 (2015). https://doi.org/10.1103/PhysRevB.91.195133. arXiv:1410.6189 [cond-mat.str-el]
H. Atakis, M.Ö. Oktel, Phys. Rev. A. 88, 033612 (2013). https://doi.org/10.1103/PhysRevA.88.033612
A. Cucchieri, T. Mendes, Phys. Rev. D. 88, 114501 (2013). https://doi.org/10.1103/PhysRevD.88.114501. arXiv:1308.1283 [hep-lat]
M. Bhatia, P.N. Swamy, Int. J. Theor. Phys. 50, 1687 (2011). https://doi.org/10.1007/s10773-011-0677-2. arXiv:1011.2544 [quant-ph]
M. Bojowald, A. Kempf, Phys. Rev. D. 86, 085017 (2012). https://doi.org/10.1103/PhysRevD.86.085017. arXiv:1112.0994 [hep-th]
A. Kempf, J. Math. Phys. 38, 1347 (1997). https://doi.org/10.1063/1.531814 [hep-th/9602085]
A. Kempf, Phys. Rev. D. 63, 083514 (2001). https://doi.org/10.1103/PhysRevD.63.083514 [astro-ph/0009209]
A. Kempf, IN *Erice, From the Planck length to the Hubble radius* 613-622 [hep-th/9810215] (1998)
A. Kempf, hep-th/9612082
A. Kempf, G. Mangano, Phys. Rev. D. 55, 7909 (1997). https://doi.org/10.1103/PhysRevD.55.7909 [hep-th/9612084]
A. Kempf, J. Phys. A. 30, 2093 (1997). https://doi.org/10.1088/0305-4470/30/6/030 [hep-th/9604045]
C. Bastos, A.E. Bernardini, O. Bertolami, N. Costa Dias, J. Nuno Prata, J. Phys. Conf. Ser. 626 (1), 012050 (2015). https://doi.org/10.1088/1742-6596/626/1/012050. arXiv:1411.2146 [quant-ph]
C. Bastos, A. Bernardini, O. Bertolami, N. Costa Dias, J. Nuno Prata, . Phys. Rev. D. 90 (4), 045023 (2014). https://doi.org/10.1103/PhysRevD.90.045023. arXiv:1406.0740 [quant-ph]
C. Bastos, A.E. Bernardini, O. Bertolami, N. Costa Dias, J. Nuno Prata, Phys. Rev. A. 89 (4), 042112 (2014). https://doi.org/10.1103/PhysRevA.89.042112. arXiv:1310.4762 [quant-ph]
J. Gamboa, M. Loewe, F. Mendez, J.C. Rojas, Mod. Phys. Lett. A. 16, 2075 (2001). https://doi.org/10.1142/S0217732301005345 [hep-th/0104224]
A. Hatzinikitas, I. Smyrnakis, J. Math. Phys. 43, 113 (2002). https://doi.org/10.1063/1.1416196 [hep-th/0103074]
V.P. Nair, A.P. Polychronakos, Phys. Lett. B. 505, 267 (2001). https://doi.org/10.1016/S0370-2693(01)00339-2 [hep- th/0011172]
M. Maceda, A. Macias, Phys. Rev. D. 79, 087703 (2009). https://doi.org/10.1103/PhysRevD.79.087703
A.E. Bernardini, Eur. Phys. J. C. 46, 113 (2006). https://doi.org/10.1140/epjc/s2006-02502-2 [hep-th/0606240]
C. Bastos, A.E. Bernardini, O. Bertolami, N. Costa Dias, J. Nuno Prata,. Phys. Rev. D. 88 (8), 085013 (2013). https://doi.org/10.1103/PhysRevD.88.085013. arXiv:1305.5792 [quant-ph]
P.R. Giri, P. Roy, Eur. Phys. J. C. 57, 835 (2008). https://doi.org/10.1140/epjc/s10052-008-0705-4. arXiv:0803.4090 [hep-th]
S. Dulat, K. Li, Chin. Phys. C. 32, 92 (2008). https://doi.org/10.1088/1674-1137/32/2/003. arXiv:0802.1118 [math-ph]
A. Halder, S. Gangopadhyay, Int. J. Theor. Phys. 56(6), 1831 (2017). arXiv:1609.06580 [hep-th]
J.F.G. Santos, A.E. Bernardini, C. Bastos, Physica. 438, 340 (2015). https://doi.org/10.1016/j.physa.2015.07.009. arXiv:1411.2941 [quant-ph]
J.F.G. Santos, A.E. Bernardini, Eur. Phys. J. Plus. 132(6), 260 (2017). https://doi.org/10.1140/epjp/i2017-11538-1. arXiv:1606.05592 [quant-ph]
A.E. Bernardini, O. Bertolami, Phys. Rev. A. 88(1), 012101 (2013). https://doi.org/10.1103/PhysRevA.88.012101. arXiv:1303.0685 [quant-ph]
I. Jabbari, A. Jahan, Z. Riazi, Turk. J. Phys. 33, 149 (2009). arXiv:1201.0827 [hep-th]
A. Jahan, Braz. J. Phys. 38, 144 (2008). arXiv:1208.0137 [hep-th]
J.M. Seddon, J.D. Gale. Thermodynamics and statistical mechanics (Royal Society of Chemistry, Cambridge CB4OWF, 2001)
Acknowledgments
D.O.S research at the Max-Planck Institute is supported by the Alexander von Humboldt foundation. S.L.G thanks the Max-Planck Institute for the invitation and financial support.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Samary, D.O., Guedezounme, S.L. & Kanfon, A.D. Lattice Oscillator Model on Noncommutative Space: Eigenvalues Problem for the Perturbation Theory. Braz J Phys 49, 458–470 (2019). https://doi.org/10.1007/s13538-019-00655-8
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13538-019-00655-8