Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient Computation of Optimal Low Thrust Gravity Perturbed Orbit Transfers

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

We have developed a new method for solving low-thrust fuel-optimal orbit transfer problems in the vicinity of a large body (planet or asteroid), considering a high-fidelity spherical harmonic gravity model. The algorithm is formulated via the indirect optimization method, leading to a two-point boundary value problem (TPBVP). We make use of a hyperbolic tangent smoothing law for performing continuation on the thrust magnitude to reduce the sharpness of the control switches in early iterations and thus promote convergence. The TPBVP is solved using the method of particular solutions (MPS) shooting method and Picard-Chebyshev numerical integration. Application of Picard-Chebyshev integration affords an avenue for increased efficiency that is not available with step-by-step integrators. We demonstrate that computing the particular solutions with only a low-fidelity force model greatly increases the efficiency of the algorithm while ultimately achieving near machine precision accuracy. A salient feature of the MPS is that it is parallelizable, and thus further speedups are available. It is also shown that, for near-Earth orbits and over a small number of en-route revolutions around the Earth, only the zonal perturbation terms are required in the costate equations to obtain a solution that is accurate to machine precision and optimal to engineering precision. The proposed framework can be used for trajectory design around small asteroids and also for orbit debris rendezvous and removal tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Longuski, J.M., Williams, S.N.: Automated design of gravity-assist trajectories to Mars and the outer planets. Celest. Mech. Dyn. Astron. 52(3), 207–220 (1991). https://doi.org/10.1007/BF00048484

    Article  Google Scholar 

  2. Izzo, D., Becerra, V.M., Myatt, D.R., Nasuto, S.J., Bishop, J.M.: Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories. J. Glob. Optim. 38(2), 283–296 (2007). https://doi.org/10.1007/s10898--006--9106--0

    Article  MathSciNet  MATH  Google Scholar 

  3. Vasile, M., Ceriotti, M.: 8 Incremental techniques for global space trajectory design. Spacecraft Trajectory Optimization, edited by B. Conway 29, 202–237 (2010). https://doi.org/10.1017/CBO9780511778025

    Article  Google Scholar 

  4. Englander, J.A., Conway, B.A., Williams, T.: Automated mission planning via evolutionary algorithms. J. Guid. Control Dynam. 35(6), 1878–1887 (2012). https://doi.org/10.2514/1.54101

    Article  Google Scholar 

  5. Abdelkhalik, O., Gad, A.: Dynamic-size multiple populations genetic algorithm for multigravity-assist trajectory optimization. J. Guid. Control Dynam. 35(2), 520–529 (2012). https://doi.org/10.2514/1.54330

    Article  Google Scholar 

  6. Chilan, C.M., Conway, B.A.: Automated design of multiphase space missions using hybrid optimal control. J. Guid. Control Dynam. 36(5), 1410–1424 (2013)

    Google Scholar 

  7. Ellison, D.H., Conway, B.A., Englander, J.A., Ozimek, M.T.: Analytic gradient computation for bounded-impulse trajectory models using two-sided shooting. J. Guid. Control Dynam. 41(7) 1449–1462 (2018)

  8. Landau, D.: Efficient maneuver placement for automated trajectory design. J. Guid. Control Dynam. 41(7), 1531–1541 (2018). https://doi.org/10.2514/1.G003172

    Article  Google Scholar 

  9. Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dynam. 21(2), 193–207 (1998). https://doi.org/10.2514/2.4231

    Article  MATH  Google Scholar 

  10. Shirazi, A., Ceberio, J., Lozano, J.A.: Spacecraft trajectory optimization: a review of models, objectives, approaches and solutions. Prog. Aerosp. Sci. 102, 76–98 (2018)

    Google Scholar 

  11. Bryson, A.E.: Applied Optimal Control: Optimization, Estimation and Control. CRC Press, Boca Raton (1975). chp.2

    Google Scholar 

  12. Hargraves, C.R., Paris, S.W.: Direct trajectory optimization using nonlinear programming and collocation. J. Guid. Control Dynam. 10(4), 338–342 (1987)

    MATH  Google Scholar 

  13. Herman, A.L., Conway, B.A.: Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules. J. Guid. Control Dynam. 19(3), 592–599 (1996)

    MATH  Google Scholar 

  14. Betts, J.: Optimal interplanetary orbit transfers by direct transcription. J. Astronaut. Sci. 42, 247–326 (1994)

    Google Scholar 

  15. Enright, P., Conway, B.: Optimal finite-thrust spacecraft trajectories using collocation and nonlinear programming. Journal of Guidance Dynamics and Control 14, 981–985 (1991)

    Google Scholar 

  16. Enright, P., Conway, B.: Discrete approximations to optimal trajectories using direct transcription and nonlinear programming. Journal of Guidance Dynamics and Control 15, 994–1002 (1992)

    MATH  Google Scholar 

  17. Seywald, H.: Trajectory optimization based on differential inclusion. Journal of Guidance Dynamics and Control 17, 480–487 (1994)

    MathSciNet  MATH  Google Scholar 

  18. Miele, A., Wang, T.: Optimal trajectories for Earth-to-Mars flight. Journal of Optimal Control Theory Applied 95, 467–499 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Miele, A., Mancuso, S.: Optimal trajectories for Earth-Moon-Earth flight. Acta Astron 49, 59–71 (2001)

    Google Scholar 

  20. Miele, A., Wang, T.: Multiple-subarc gradient-restoration algorithm, Part 1: Algorithm structure. Journal of Optimal Control Theory Applied 116, 1–17 (2003)

    MATH  Google Scholar 

  21. Miele, A., Wang, T.: Multiple-subarc gradient-restoration algorithm, Part 2: Application to a multistage launch vehicle design. Journal of Optimal Control Theory Applied 116, 19–39 (2003)

    MATH  Google Scholar 

  22. Brusch, R., Vincent, T.: Numericla implementation of a second-order variational endpoint condition. Journal of AIAA 8, 2230–2235 (1970)

    MATH  Google Scholar 

  23. Hull, D.: Initial Lagrange multipliers for the shooting method. J. Guid. Control Dynam. 31, 1490–1492 (2008)

    Google Scholar 

  24. Conway, B., Mauro, P.: Optimal low-thrust orbital maneuvers vis indirect swarping. Journal of Optimal Theory Applied 162, 272–292 (2014)

    MATH  Google Scholar 

  25. Kluever, C.A., Pierson, B.L.: Optimal earth-moon trajectories using nuclear electric propulsion. J. Guid. Control Dynam. 20(2), 239–245 (1997). https://doi.org/10.2514/2.4058

    Article  Google Scholar 

  26. Bertrand, R., Epenoy, R.: New smoothing techniques for solving bang–bang optimal control problems-numerical results and statistical interpretation. Optimal Control Appl. Methods 23(4), 171–197 (2002). https://doi.org/10.1002/oca.709

    Article  MathSciNet  MATH  Google Scholar 

  27. Haberkorn, T., Martinon, P., Gergaud, J., et al.: Low-thrust minimum-fuel orbital transfer: a homotopic approach. J. Guid. Control Dynam. 27, 1046–1060 (2004). https://doi.org/10.2514/1.4022

    Article  Google Scholar 

  28. La Mantia, M., Casalino, L.: Indirect optimization of low-thrust capture trajectories. J. Guid. Control Dynam. 29(4), 1011–1014 (2006). https://doi.org/10.2514/1.18986

    Article  Google Scholar 

  29. Russell, R.P.: Primer vector theory applied to global low-thrust trade studies. J. Guid. Control Dynam. 30(2), 460–472 (2007)

    Google Scholar 

  30. Silva, C., Trélat, E.: Smooth regularization of bang-bang optimal control problems. IEEE Trans. Autom. Control 55(11), 2488–2499 (2010). https://doi.org/10.1109/TAC.2010.2047742

    Article  MathSciNet  MATH  Google Scholar 

  31. Jiang, F., Baoyin, H., Li, J.: Practical techniques for low-thrust trajectory optimization with homotopic approach. J. Guid. Control Dynam. 35(1), 245–258 (2012). https://doi.org/10.2514/1.52476

    Article  Google Scholar 

  32. Dutta, A., Arora, N., Russell, R.P.: Peer-to-peer refueling strategy using low-thrust propulsion. J. Spacecr. Rocket. 49(5), 944–954 (2012). https://doi.org/10.2514/1.A32106

    Article  Google Scholar 

  33. Taheri, E., Kolmanovsky, I., Atkins, E.: Enhanced smoothing technique for indirect optimization of minimum-fuel low-thrust trajectories. J. Guid. Control Dynam. 39(11), 2500–2511 (2016). https://doi.org/10.2514/1.G000379

    Article  Google Scholar 

  34. Pan, B., Lu, P., Pan, X., Ma, Y.: Double-homotopy method for solving optimal control problems. J. Guid. Control Dynam. 39(8), 1706–1720 (2016). https://doi.org/10.2514/1.G001553

    Article  Google Scholar 

  35. Zhao, S., Zhang, J.: Minimum-fuel station-change for geostationary satellites using low-thrust considering perturbations. Acta Astronaut. 127, 296–307 (2016). https://doi.org/10.1016/j.actaastro.2016.05.028

    Article  Google Scholar 

  36. Zhao, S., Gurfil, P., Zhang, J.: Initial costates for Low-Thrust Minimum-Time station change of geostationary satellites. J. Guid. Control Dynam. 39(12), 2746–2756 (2016). https://doi.org/10.2514/1.G000431

    Article  Google Scholar 

  37. Chi, Z., Yang, H., Chen, S., Li, J.: Homotopy method for optimization of variable-specific-impulse low-thrust trajectories. Astrophys. Space Sci. 362, 216 (2017). https://doi.org/10.1007/s10509-017-3196-7

    Article  MathSciNet  Google Scholar 

  38. Zhu, Z., Gan, Q., Yang, X., Gao, Y.: Solving fuel-optimal low-thrust orbital transfers with bang-bang control using a novel continuation technique. Acta Astronaut. 137, 98–113 (2017). https://doi.org/10.1016/j.actaastro.2017.03.032

    Article  Google Scholar 

  39. Mall, K., Grant, M.J.: Epsilon-Trig Regularization method for Bang-Bang optimal control problems. J. Optim. Theory Appl. 174(2), 500–517 (2017). https://doi.org/10.1007/s10957--017--1129--9

    Article  MathSciNet  MATH  Google Scholar 

  40. Sullo, N., Peloni, A., Ceriotti, M.: Low-thrust to solar-sail trajectories: a homotopic approach. J. Guid. Control Dynam. 40(11), 2796–2806 (2017). https://doi.org/10.2514/1.G002552

    Article  Google Scholar 

  41. Pérez-Palau, D., Epenoy, R.: Fuel optimization for low-thrust Earth–Moon transfer via indirect optimal control. Celest. Mech. Dyn. Astron. 130(2), 21 (2018). https://doi.org/10.1007/s105

    Article  MathSciNet  MATH  Google Scholar 

  42. Taheri, E., Junkins, J.: A generic approach for optimal bang-off-bang spacecraft maneuvers. 41st Annual AAS Guidance & Control Conference. Breckenridge, Colorado, AAS 18-088 (2018)

  43. Junkins, J.L., Taheri, E.: Exploration of alternative state vector choices for low thrust trajectory optimization. J. Guid. Control Dynam., accepted for publication (https://doi.org/10.2514/1.G003686)

  44. Miele, A., Iyer, R.: General technique for solving nonlinear, two-point boundary value problems via the method of particular solutions. J. Optim. Theory Appl. 5(5), 392–399 (1970)

    MathSciNet  MATH  Google Scholar 

  45. Kelso, T., et al.: Analysis of the Iridium 33-Cosmos 2251 collision. Adv. Astronaut. Sci. 135(2), 1099–1112 (2009)

    Google Scholar 

  46. Pardini, C., Anselmo, L.: Assessment of the consequences of the Fengyun-1C breakup in low Earth orbit. Adv. Space Res. 44(5), 545–557 (2009)

    Google Scholar 

  47. Jones, K., Fuentes, K., Wright, D.: A minefield in earth orbit: how space debris is spinning out of control. Sci. Am. (2012)

  48. Lawden, D.F.: Optimal Trajectories for Space Navigation. Butterworths, London (1963). chp.3

    MATH  Google Scholar 

  49. Tsiotras, P., Kelley, H.J.: Drag-law effects in the Goddard problem. Automatica 27(3), 481–490 (1991). https://doi.org/10.1.1.532.3967

    MathSciNet  Google Scholar 

  50. Tsiotras, P., Kelley, H.J.: Goddard problem with constrained time of flight. J. Guid. Control Dynam. 15(2), 289–296 (1992). https://doi.org/10.2514/3.20836

    Article  MATH  Google Scholar 

  51. Bonnans, F., Martinon, P., Trélat, E.: Singular arcs in the generalized Goddard’s problem. J. Optim. Theory Appl. 139(2), 439–461 (2008). https://doi.org/10.1.1.495.5334

    MathSciNet  MATH  Google Scholar 

  52. Taheri, E., Junkins, J.: Hyperbolic-Tangent-Based double-smoothing method and its application in optimal control. In: The 2018 AAS/AIAA Astrodynamics Specialist Conference. Snowbird, Utah. AAS-18-379 (2018)

  53. Betts, J.T.: Practical methods for optimal control using nonlinear programming. Appl. Mech. Rev. 55, B68 (2002)

    Google Scholar 

  54. Conway, B.A. (ed.): Spacecraft Trajectory Optimization, vol. 29. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  55. Dixon, L., Bartholomew-Biggs, M.C.: Adjoint—control transformations for solving practical optimal control problems. Optimal Control Appl. Methods 2(4), 365–381 (1981). https://doi.org/10.1002/oca.4660020405

    Article  MathSciNet  MATH  Google Scholar 

  56. Seywald, H., Kumar, R.R.: Finite difference scheme for automatic costate calculation. J. Guid. Control Dynam. 19(1), 231–239 (1996)

    MATH  Google Scholar 

  57. Seywald, H., Kumar, R.R.: Method for automatic costate calculation. J. Guid. Control Dynam. 19(6), 1252–1261 (1996)

    MATH  Google Scholar 

  58. Taheri, E., Abdelkhalik, O.: Shape based approximation of constrained low-thrust space trajectories using Fourier series. J. Spacecr. Rocket. 49(3), 535–546 (2012)

    Google Scholar 

  59. Abdelkhalik, O., Taheri, E.: Approximate on-off low-thrust space trajectories using Fourier series. J. Spacecr. Rocket. 49(5), 962–965 (2012)

    Google Scholar 

  60. Taheri, E., Abdelkhalik, O.: Fast initial trajectory design for low-thrust restricted-three-body problems. J. Guid. Control Dynam. 38(11), 2146–2160 (2015)

    Google Scholar 

  61. Taheri, E., Abdelkhalik, O.: Initial three-dimensional low-thrust trajectory design. Adv. Space Res. 57(3), 889–903 (2016)

    Google Scholar 

  62. Taheri, E., Kolmanovsky, I., Atkins, E.: Shaping low-thrust trajectories with thrust-handling feature. Adv. Space Res. 61, 879–890 (2018). https://doi.org/10.1016/j.asr.2017.11.006

    Article  Google Scholar 

  63. Taheri, E., Li, N.I., Kolmanovsky, I.: Co-state initialization for the minimum-time low-thrust trajectory optimization. Adv. Space Res. 59(9), 2360–2373 (2017). https://doi.org/10.1016/j.asr.2017.02.010

    Article  Google Scholar 

  64. Jiang, F., Tang, G., Li, J.: Improving low-thrust trajectory optimization by adjoint estimation with shape-based path. J. Guid. Control Dynam. 40(12), 3282–3289 (2017)

    Google Scholar 

  65. Coles, W., Sherman, T.: Convergence of successive approximations for nonlinear two-point boundary value problems. SIAM J. Appl. Math. 15(2), 426–433 (1967)

    MathSciNet  MATH  Google Scholar 

  66. Van de Craats, J: On the region of convergence of Picard’s iteration. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fü,r Angewandte Mathematik und Mechanik 52(8), 487–491 (1972)

    MathSciNet  MATH  Google Scholar 

  67. Read, J., Bani Younes, A., Junkins, J.: Efficient orbit propagation of orbital elements using modified Chebyshev-Picard iteration method. Comput. Model. Eng. Sci. 111, 65–82 (2016)

    Google Scholar 

  68. Clenshaw, C.W., Norton, H.: The solution of nonlinear ordinary differential equations in chebyshev series. Comput. J. 6, 88–92 (1963)

    MathSciNet  MATH  Google Scholar 

  69. Feagin, T: The numerical solution of two-point boundary value problems using chebyshev polynomial series. PhD. dissertation, University of Texas, Austin, Texas, USA (1972)

  70. Feagin, T., Nacozy, P.: Matrix formulation of the picard method for parallel computation. Celest. Mech. Dyn. Astron. 29, 107–115 (1983)

    MathSciNet  MATH  Google Scholar 

  71. Shaver, J.: Formulation and evaluation of parallel algorithms for the orbit determination problem. Ph.D. dissertation, Department of Aeronautics and Astronautics, MIT, Cambridge MA (1980)

  72. Fukushima, T.: Vector integration of dynamical motions by the Picard-Chebyshev method. Astron. J. 113, 2325–2328 (1997)

    Google Scholar 

  73. Bai, X., Junkins, J.: Modified Chebyshev-Picard iteration methods for solution of initial value problems. Adv. Astronaut. Sci. 139, 345–362 (2011)

    Google Scholar 

  74. Bai, X., Junkins, J.: Modified Chebyshev-Picard iteration methods for solution of boundary value problems. Adv. Astronaut. Sci. 140, 381–400 (2011)

    Google Scholar 

  75. Bai, X.: Modified Chebyshev-Picard iteration for solution of initial value and boundary value problems. PhD. dissertation, Texas A&M, College Station, Texas, USA (2010)

  76. Junkins, J., Bani Younes, A., Woollands, R., Bai, X.: Orthogonal approximation in higher dimensions: applications in astrodynamics, AAS 12-634 JN Juang astrodynamics symp (2012)

  77. Junkins, J., Bani Younes, A., Woollands, R., Bai, X.: Picard iteration, chebyshev polynomial and chebyshev picard methods: application in astrodynamics. J. Astronaut. Sci. (2013)

  78. Junkins, J., Bani Younes, A., Woollands, R., Bai, X.: Efficient and Adaptive Orthogonal Finite Element Representation of the Geopotential. J. Astronaut. Sci. 64(2), 118–155 (2016)

  79. Bani Younes, A.: Orthogonal polynomial approximation in higher dimensions: applications in astrodynamics. PhD. dissertation, Texas A&M, College Station, Texas USA (2013)

  80. Macomber, B.: Enhancements of Chebyshev-Picard iteration efficiency for generally perturbed orbits and constrained dynamics systems. PhD. Dissertation, Texas A&M University, College Station, Texas, USA (2015)

  81. Macomber, B., Probe, A., Woollands, R., Read, J., Junkins, J.: Enhancements of modified Chebyshev-Picard iteration efficiency for perturbed orbit propagation. Comput. Model. Eng. Sci. 111, 29–64 (2016)

    Google Scholar 

  82. Junkins, J., Woollands, R.: Nonlinear differential equation solvers via adaptive Picard-Chebyshev iteration: Applications in astrodynamics. AAS/AIAA astrodynamics specialist conference (2017)

  83. Woollands, R., Junkins, J.: Nonlinear differential equation solvers via adaptive Picard-Chebyshev iteration: applications in astrodynamics. J. Guid. Control Dynam. December (2018)

  84. Woollands, R., Read, J., Probe, A., Junkins, J.: Multiple revolution solutions for the Perturbed Lambert problem using the method of particular solutions and Picard iteration. J. Astronaut. Sci. 64(4), 361–378 (2017)

  85. Kéchichian, J.A.: Inclusion of higher order harmonics in the modeling of optimal low-thrust orbit transfer. J. Astronaut. Sci. 56(1), 41–70 (2008)

    Google Scholar 

  86. Kechichian, J.: The treatment of the earth oblateness effect in trajectory optimization in equinoctial coordinates. Acta Astronaut. 40(1), 69–82 (1997)

    Google Scholar 

  87. Taheri, E., Junkins, L.J.: How many impulses redux. J. Astronaut. Sci., under review (2018)

  88. Handelsman, M., Lion, P.: Primer vector on fixed-time impulsive trajectories. AIAA J. 6(1), 127–132 (1968)

    MATH  Google Scholar 

  89. Graham, K.F., Rao, A.V.: Minimum-time trajectory optimization of multiple revolution low-thrust earth-orbit transfers. J. Spacecr. Rocket. 52(3), 711–727 (2015)

    Google Scholar 

Download references

Acknowledgment

Initial work was conducted by Woollands as a post-doctoral researcher at Texas A&M where she was funded by AFOSR (Staci Williams) and AFRL (Alok Das). Woollands continued and completed this work at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, and was funded by a Spontaneous Research and Technology Development Grant (Fred Hadaegh). Taheri and Junkins were funded by AFOSR (Staci Williams) and AFRL (Alok Das).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robyn Woollands.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woollands, R., Taheri, E. & Junkins, J.L. Efficient Computation of Optimal Low Thrust Gravity Perturbed Orbit Transfers. J Astronaut Sci 67, 458–484 (2020). https://doi.org/10.1007/s40295-019-00152-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-019-00152-9

Keywords