Abstract
We have developed a new method for solving low-thrust fuel-optimal orbit transfer problems in the vicinity of a large body (planet or asteroid), considering a high-fidelity spherical harmonic gravity model. The algorithm is formulated via the indirect optimization method, leading to a two-point boundary value problem (TPBVP). We make use of a hyperbolic tangent smoothing law for performing continuation on the thrust magnitude to reduce the sharpness of the control switches in early iterations and thus promote convergence. The TPBVP is solved using the method of particular solutions (MPS) shooting method and Picard-Chebyshev numerical integration. Application of Picard-Chebyshev integration affords an avenue for increased efficiency that is not available with step-by-step integrators. We demonstrate that computing the particular solutions with only a low-fidelity force model greatly increases the efficiency of the algorithm while ultimately achieving near machine precision accuracy. A salient feature of the MPS is that it is parallelizable, and thus further speedups are available. It is also shown that, for near-Earth orbits and over a small number of en-route revolutions around the Earth, only the zonal perturbation terms are required in the costate equations to obtain a solution that is accurate to machine precision and optimal to engineering precision. The proposed framework can be used for trajectory design around small asteroids and also for orbit debris rendezvous and removal tasks.
Similar content being viewed by others
References
Longuski, J.M., Williams, S.N.: Automated design of gravity-assist trajectories to Mars and the outer planets. Celest. Mech. Dyn. Astron. 52(3), 207–220 (1991). https://doi.org/10.1007/BF00048484
Izzo, D., Becerra, V.M., Myatt, D.R., Nasuto, S.J., Bishop, J.M.: Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories. J. Glob. Optim. 38(2), 283–296 (2007). https://doi.org/10.1007/s10898--006--9106--0
Vasile, M., Ceriotti, M.: 8 Incremental techniques for global space trajectory design. Spacecraft Trajectory Optimization, edited by B. Conway 29, 202–237 (2010). https://doi.org/10.1017/CBO9780511778025
Englander, J.A., Conway, B.A., Williams, T.: Automated mission planning via evolutionary algorithms. J. Guid. Control Dynam. 35(6), 1878–1887 (2012). https://doi.org/10.2514/1.54101
Abdelkhalik, O., Gad, A.: Dynamic-size multiple populations genetic algorithm for multigravity-assist trajectory optimization. J. Guid. Control Dynam. 35(2), 520–529 (2012). https://doi.org/10.2514/1.54330
Chilan, C.M., Conway, B.A.: Automated design of multiphase space missions using hybrid optimal control. J. Guid. Control Dynam. 36(5), 1410–1424 (2013)
Ellison, D.H., Conway, B.A., Englander, J.A., Ozimek, M.T.: Analytic gradient computation for bounded-impulse trajectory models using two-sided shooting. J. Guid. Control Dynam. 41(7) 1449–1462 (2018)
Landau, D.: Efficient maneuver placement for automated trajectory design. J. Guid. Control Dynam. 41(7), 1531–1541 (2018). https://doi.org/10.2514/1.G003172
Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dynam. 21(2), 193–207 (1998). https://doi.org/10.2514/2.4231
Shirazi, A., Ceberio, J., Lozano, J.A.: Spacecraft trajectory optimization: a review of models, objectives, approaches and solutions. Prog. Aerosp. Sci. 102, 76–98 (2018)
Bryson, A.E.: Applied Optimal Control: Optimization, Estimation and Control. CRC Press, Boca Raton (1975). chp.2
Hargraves, C.R., Paris, S.W.: Direct trajectory optimization using nonlinear programming and collocation. J. Guid. Control Dynam. 10(4), 338–342 (1987)
Herman, A.L., Conway, B.A.: Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules. J. Guid. Control Dynam. 19(3), 592–599 (1996)
Betts, J.: Optimal interplanetary orbit transfers by direct transcription. J. Astronaut. Sci. 42, 247–326 (1994)
Enright, P., Conway, B.: Optimal finite-thrust spacecraft trajectories using collocation and nonlinear programming. Journal of Guidance Dynamics and Control 14, 981–985 (1991)
Enright, P., Conway, B.: Discrete approximations to optimal trajectories using direct transcription and nonlinear programming. Journal of Guidance Dynamics and Control 15, 994–1002 (1992)
Seywald, H.: Trajectory optimization based on differential inclusion. Journal of Guidance Dynamics and Control 17, 480–487 (1994)
Miele, A., Wang, T.: Optimal trajectories for Earth-to-Mars flight. Journal of Optimal Control Theory Applied 95, 467–499 (1997)
Miele, A., Mancuso, S.: Optimal trajectories for Earth-Moon-Earth flight. Acta Astron 49, 59–71 (2001)
Miele, A., Wang, T.: Multiple-subarc gradient-restoration algorithm, Part 1: Algorithm structure. Journal of Optimal Control Theory Applied 116, 1–17 (2003)
Miele, A., Wang, T.: Multiple-subarc gradient-restoration algorithm, Part 2: Application to a multistage launch vehicle design. Journal of Optimal Control Theory Applied 116, 19–39 (2003)
Brusch, R., Vincent, T.: Numericla implementation of a second-order variational endpoint condition. Journal of AIAA 8, 2230–2235 (1970)
Hull, D.: Initial Lagrange multipliers for the shooting method. J. Guid. Control Dynam. 31, 1490–1492 (2008)
Conway, B., Mauro, P.: Optimal low-thrust orbital maneuvers vis indirect swarping. Journal of Optimal Theory Applied 162, 272–292 (2014)
Kluever, C.A., Pierson, B.L.: Optimal earth-moon trajectories using nuclear electric propulsion. J. Guid. Control Dynam. 20(2), 239–245 (1997). https://doi.org/10.2514/2.4058
Bertrand, R., Epenoy, R.: New smoothing techniques for solving bang–bang optimal control problems-numerical results and statistical interpretation. Optimal Control Appl. Methods 23(4), 171–197 (2002). https://doi.org/10.1002/oca.709
Haberkorn, T., Martinon, P., Gergaud, J., et al.: Low-thrust minimum-fuel orbital transfer: a homotopic approach. J. Guid. Control Dynam. 27, 1046–1060 (2004). https://doi.org/10.2514/1.4022
La Mantia, M., Casalino, L.: Indirect optimization of low-thrust capture trajectories. J. Guid. Control Dynam. 29(4), 1011–1014 (2006). https://doi.org/10.2514/1.18986
Russell, R.P.: Primer vector theory applied to global low-thrust trade studies. J. Guid. Control Dynam. 30(2), 460–472 (2007)
Silva, C., Trélat, E.: Smooth regularization of bang-bang optimal control problems. IEEE Trans. Autom. Control 55(11), 2488–2499 (2010). https://doi.org/10.1109/TAC.2010.2047742
Jiang, F., Baoyin, H., Li, J.: Practical techniques for low-thrust trajectory optimization with homotopic approach. J. Guid. Control Dynam. 35(1), 245–258 (2012). https://doi.org/10.2514/1.52476
Dutta, A., Arora, N., Russell, R.P.: Peer-to-peer refueling strategy using low-thrust propulsion. J. Spacecr. Rocket. 49(5), 944–954 (2012). https://doi.org/10.2514/1.A32106
Taheri, E., Kolmanovsky, I., Atkins, E.: Enhanced smoothing technique for indirect optimization of minimum-fuel low-thrust trajectories. J. Guid. Control Dynam. 39(11), 2500–2511 (2016). https://doi.org/10.2514/1.G000379
Pan, B., Lu, P., Pan, X., Ma, Y.: Double-homotopy method for solving optimal control problems. J. Guid. Control Dynam. 39(8), 1706–1720 (2016). https://doi.org/10.2514/1.G001553
Zhao, S., Zhang, J.: Minimum-fuel station-change for geostationary satellites using low-thrust considering perturbations. Acta Astronaut. 127, 296–307 (2016). https://doi.org/10.1016/j.actaastro.2016.05.028
Zhao, S., Gurfil, P., Zhang, J.: Initial costates for Low-Thrust Minimum-Time station change of geostationary satellites. J. Guid. Control Dynam. 39(12), 2746–2756 (2016). https://doi.org/10.2514/1.G000431
Chi, Z., Yang, H., Chen, S., Li, J.: Homotopy method for optimization of variable-specific-impulse low-thrust trajectories. Astrophys. Space Sci. 362, 216 (2017). https://doi.org/10.1007/s10509-017-3196-7
Zhu, Z., Gan, Q., Yang, X., Gao, Y.: Solving fuel-optimal low-thrust orbital transfers with bang-bang control using a novel continuation technique. Acta Astronaut. 137, 98–113 (2017). https://doi.org/10.1016/j.actaastro.2017.03.032
Mall, K., Grant, M.J.: Epsilon-Trig Regularization method for Bang-Bang optimal control problems. J. Optim. Theory Appl. 174(2), 500–517 (2017). https://doi.org/10.1007/s10957--017--1129--9
Sullo, N., Peloni, A., Ceriotti, M.: Low-thrust to solar-sail trajectories: a homotopic approach. J. Guid. Control Dynam. 40(11), 2796–2806 (2017). https://doi.org/10.2514/1.G002552
Pérez-Palau, D., Epenoy, R.: Fuel optimization for low-thrust Earth–Moon transfer via indirect optimal control. Celest. Mech. Dyn. Astron. 130(2), 21 (2018). https://doi.org/10.1007/s105
Taheri, E., Junkins, J.: A generic approach for optimal bang-off-bang spacecraft maneuvers. 41st Annual AAS Guidance & Control Conference. Breckenridge, Colorado, AAS 18-088 (2018)
Junkins, J.L., Taheri, E.: Exploration of alternative state vector choices for low thrust trajectory optimization. J. Guid. Control Dynam., accepted for publication (https://doi.org/10.2514/1.G003686)
Miele, A., Iyer, R.: General technique for solving nonlinear, two-point boundary value problems via the method of particular solutions. J. Optim. Theory Appl. 5(5), 392–399 (1970)
Kelso, T., et al.: Analysis of the Iridium 33-Cosmos 2251 collision. Adv. Astronaut. Sci. 135(2), 1099–1112 (2009)
Pardini, C., Anselmo, L.: Assessment of the consequences of the Fengyun-1C breakup in low Earth orbit. Adv. Space Res. 44(5), 545–557 (2009)
Jones, K., Fuentes, K., Wright, D.: A minefield in earth orbit: how space debris is spinning out of control. Sci. Am. (2012)
Lawden, D.F.: Optimal Trajectories for Space Navigation. Butterworths, London (1963). chp.3
Tsiotras, P., Kelley, H.J.: Drag-law effects in the Goddard problem. Automatica 27(3), 481–490 (1991). https://doi.org/10.1.1.532.3967
Tsiotras, P., Kelley, H.J.: Goddard problem with constrained time of flight. J. Guid. Control Dynam. 15(2), 289–296 (1992). https://doi.org/10.2514/3.20836
Bonnans, F., Martinon, P., Trélat, E.: Singular arcs in the generalized Goddard’s problem. J. Optim. Theory Appl. 139(2), 439–461 (2008). https://doi.org/10.1.1.495.5334
Taheri, E., Junkins, J.: Hyperbolic-Tangent-Based double-smoothing method and its application in optimal control. In: The 2018 AAS/AIAA Astrodynamics Specialist Conference. Snowbird, Utah. AAS-18-379 (2018)
Betts, J.T.: Practical methods for optimal control using nonlinear programming. Appl. Mech. Rev. 55, B68 (2002)
Conway, B.A. (ed.): Spacecraft Trajectory Optimization, vol. 29. Cambridge University Press, Cambridge (2010)
Dixon, L., Bartholomew-Biggs, M.C.: Adjoint—control transformations for solving practical optimal control problems. Optimal Control Appl. Methods 2(4), 365–381 (1981). https://doi.org/10.1002/oca.4660020405
Seywald, H., Kumar, R.R.: Finite difference scheme for automatic costate calculation. J. Guid. Control Dynam. 19(1), 231–239 (1996)
Seywald, H., Kumar, R.R.: Method for automatic costate calculation. J. Guid. Control Dynam. 19(6), 1252–1261 (1996)
Taheri, E., Abdelkhalik, O.: Shape based approximation of constrained low-thrust space trajectories using Fourier series. J. Spacecr. Rocket. 49(3), 535–546 (2012)
Abdelkhalik, O., Taheri, E.: Approximate on-off low-thrust space trajectories using Fourier series. J. Spacecr. Rocket. 49(5), 962–965 (2012)
Taheri, E., Abdelkhalik, O.: Fast initial trajectory design for low-thrust restricted-three-body problems. J. Guid. Control Dynam. 38(11), 2146–2160 (2015)
Taheri, E., Abdelkhalik, O.: Initial three-dimensional low-thrust trajectory design. Adv. Space Res. 57(3), 889–903 (2016)
Taheri, E., Kolmanovsky, I., Atkins, E.: Shaping low-thrust trajectories with thrust-handling feature. Adv. Space Res. 61, 879–890 (2018). https://doi.org/10.1016/j.asr.2017.11.006
Taheri, E., Li, N.I., Kolmanovsky, I.: Co-state initialization for the minimum-time low-thrust trajectory optimization. Adv. Space Res. 59(9), 2360–2373 (2017). https://doi.org/10.1016/j.asr.2017.02.010
Jiang, F., Tang, G., Li, J.: Improving low-thrust trajectory optimization by adjoint estimation with shape-based path. J. Guid. Control Dynam. 40(12), 3282–3289 (2017)
Coles, W., Sherman, T.: Convergence of successive approximations for nonlinear two-point boundary value problems. SIAM J. Appl. Math. 15(2), 426–433 (1967)
Van de Craats, J: On the region of convergence of Picard’s iteration. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fü,r Angewandte Mathematik und Mechanik 52(8), 487–491 (1972)
Read, J., Bani Younes, A., Junkins, J.: Efficient orbit propagation of orbital elements using modified Chebyshev-Picard iteration method. Comput. Model. Eng. Sci. 111, 65–82 (2016)
Clenshaw, C.W., Norton, H.: The solution of nonlinear ordinary differential equations in chebyshev series. Comput. J. 6, 88–92 (1963)
Feagin, T: The numerical solution of two-point boundary value problems using chebyshev polynomial series. PhD. dissertation, University of Texas, Austin, Texas, USA (1972)
Feagin, T., Nacozy, P.: Matrix formulation of the picard method for parallel computation. Celest. Mech. Dyn. Astron. 29, 107–115 (1983)
Shaver, J.: Formulation and evaluation of parallel algorithms for the orbit determination problem. Ph.D. dissertation, Department of Aeronautics and Astronautics, MIT, Cambridge MA (1980)
Fukushima, T.: Vector integration of dynamical motions by the Picard-Chebyshev method. Astron. J. 113, 2325–2328 (1997)
Bai, X., Junkins, J.: Modified Chebyshev-Picard iteration methods for solution of initial value problems. Adv. Astronaut. Sci. 139, 345–362 (2011)
Bai, X., Junkins, J.: Modified Chebyshev-Picard iteration methods for solution of boundary value problems. Adv. Astronaut. Sci. 140, 381–400 (2011)
Bai, X.: Modified Chebyshev-Picard iteration for solution of initial value and boundary value problems. PhD. dissertation, Texas A&M, College Station, Texas, USA (2010)
Junkins, J., Bani Younes, A., Woollands, R., Bai, X.: Orthogonal approximation in higher dimensions: applications in astrodynamics, AAS 12-634 JN Juang astrodynamics symp (2012)
Junkins, J., Bani Younes, A., Woollands, R., Bai, X.: Picard iteration, chebyshev polynomial and chebyshev picard methods: application in astrodynamics. J. Astronaut. Sci. (2013)
Junkins, J., Bani Younes, A., Woollands, R., Bai, X.: Efficient and Adaptive Orthogonal Finite Element Representation of the Geopotential. J. Astronaut. Sci. 64(2), 118–155 (2016)
Bani Younes, A.: Orthogonal polynomial approximation in higher dimensions: applications in astrodynamics. PhD. dissertation, Texas A&M, College Station, Texas USA (2013)
Macomber, B.: Enhancements of Chebyshev-Picard iteration efficiency for generally perturbed orbits and constrained dynamics systems. PhD. Dissertation, Texas A&M University, College Station, Texas, USA (2015)
Macomber, B., Probe, A., Woollands, R., Read, J., Junkins, J.: Enhancements of modified Chebyshev-Picard iteration efficiency for perturbed orbit propagation. Comput. Model. Eng. Sci. 111, 29–64 (2016)
Junkins, J., Woollands, R.: Nonlinear differential equation solvers via adaptive Picard-Chebyshev iteration: Applications in astrodynamics. AAS/AIAA astrodynamics specialist conference (2017)
Woollands, R., Junkins, J.: Nonlinear differential equation solvers via adaptive Picard-Chebyshev iteration: applications in astrodynamics. J. Guid. Control Dynam. December (2018)
Woollands, R., Read, J., Probe, A., Junkins, J.: Multiple revolution solutions for the Perturbed Lambert problem using the method of particular solutions and Picard iteration. J. Astronaut. Sci. 64(4), 361–378 (2017)
Kéchichian, J.A.: Inclusion of higher order harmonics in the modeling of optimal low-thrust orbit transfer. J. Astronaut. Sci. 56(1), 41–70 (2008)
Kechichian, J.: The treatment of the earth oblateness effect in trajectory optimization in equinoctial coordinates. Acta Astronaut. 40(1), 69–82 (1997)
Taheri, E., Junkins, L.J.: How many impulses redux. J. Astronaut. Sci., under review (2018)
Handelsman, M., Lion, P.: Primer vector on fixed-time impulsive trajectories. AIAA J. 6(1), 127–132 (1968)
Graham, K.F., Rao, A.V.: Minimum-time trajectory optimization of multiple revolution low-thrust earth-orbit transfers. J. Spacecr. Rocket. 52(3), 711–727 (2015)
Acknowledgment
Initial work was conducted by Woollands as a post-doctoral researcher at Texas A&M where she was funded by AFOSR (Staci Williams) and AFRL (Alok Das). Woollands continued and completed this work at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, and was funded by a Spontaneous Research and Technology Development Grant (Fred Hadaegh). Taheri and Junkins were funded by AFOSR (Staci Williams) and AFRL (Alok Das).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Woollands, R., Taheri, E. & Junkins, J.L. Efficient Computation of Optimal Low Thrust Gravity Perturbed Orbit Transfers. J Astronaut Sci 67, 458–484 (2020). https://doi.org/10.1007/s40295-019-00152-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40295-019-00152-9