Abstract
In the present paper, we study some approximation properties of the generalized Szász type operators introduced by V. Miheşan (Creat. Math. Inf. 17:466–472, 2008). We present a quantitative Voronovskaya-type theorem, local approximation theorem by means of second-order modulus of continuity and weighted approximation for these operators. The rate of convergence for differential functions whose derivatives are of bounded variation is also obtained.
Similar content being viewed by others
References
Acar, T.: Approximation by bivariate (p,q)-Baskakov-Kantorovich operators. Georgian Math. J. 23, 459–468 (2016)
Acar, T.: Rate of convergence for Ibragimov-Gadjiev-Durrmeyer operators. Demonstr. Math. 50(1), 119–129 (2017)
Acar, T.: (p, q)-generalization of szász-mirakyan operators. Math. Methods Appl. Sci. 39(10), 2685–2695 (2016)
Acar, T.: Asymptotic formulas for generalized szász-mirakyan operators. Appl. Math. Comput. 263, 233–239 (2015)
Acar, T., Ulusoy, G.: Approximation by modified szász-durrmeyer operators. Period. Math. Hungar. 72(1), 64–75 (2016)
Acar, T., Gupta, V., Aral, A.: Rate of convergence for generalized szász operators. Bull. Math. Sci. 1(1), 99–113 (2011)
Agrawal, P.N., Gupta, V., Sathish Kumar, A., Kajla, A.: Generalized baskakov-szász type operators. Appl. Math. Comput. 236, 311–324 (2014)
Aral, A.: A generalization of szász-mirakyan operators based on q-integers. Math. Comput. Model. 47(9-10), 1052–1062 (2008)
Aral, A., Inoan, D., Raşa, I.: On the generalized szász-mirakyan operators. Results Math. 65(3-4), 441–452 (2014)
Atakut, Ç., İspir, N.: Approximation by modified szász-mirakjan operators on weighted spaces. Proc. Indian Acad. Sci. Math. Sci. 112(4), 571–578 (2002)
Baskakov, V.A.: A sequence of linear positive operators in the space of continuous functions. Dokl. Acad. Nauk. SSSR 113, 249–251 (1957)
Bernstein, S.N.: Demonstration du théorème de Weierstrass fondée sur le calcul de probabilités. Commun. Soc. Math. Kharkow 13(2), 1–2 (Unknown Month 1912)
Cárdenas-Morales, D., Gupta, V.: Two families of Bernstein-Durrmeyer type operators. Appl. Math. Comput. 248, 342–353 (2014)
Ciupa, A.: On a generalized favard-szász type operator. Research Seminar on Numerical and Statistical Calculus, Univ. Babeş, Bolyai Cluj-Napoca, preprint 1, 33–38 (1994)
Finta, Z., Govil, N.K., Gupta, V.: Some results on modified szász-mirakjan operators. J. Math. Anal. Appl. 327(2), 1284–1296 (2007)
Gadžiev, A.D.: Theorems of the type of P. P. Korovkin’s theorems. Math. Zametki 20(5), 781–786 (1976)
Gupta, V., Agarwal, R.P.: Convergence estimates in approximation theory. Springer, Cham (2014)
İbikli, E., Gadjieva, E.A.: The order of approximation of some unbounded function by the sequences of positive linear operators. Turkish J. Math. 19(3), 331–337 (1995)
İspir, N.: Rate of convergence of generalized rational type Baskakov operators. Math. Comput. Modelling 46(5-6), 625–631 (2007)
Kajla, A., Agrawal, P.N.: Szász-durrmeyer type operators based on Charlier polynomials. Appl. Math. Comput. 268, 1001–1014 (2015)
Kajla, A., Acu, A.M., Agrawal, P.N.: Baskakov-szász type operators based on inverse pólya-eggenberger distribution. Ann. Funct. Anal. 8(1), 106–123 (2017)
Kajla, A., Agrawal, P.N.: Approximation properties of szász type operators based on Charlier polynomials. Turkish J. Math. 39(6), 990–1003 (2015)
Karsli, H.: Rate of convergence of new Gamma type operators for functions with derivatives of bounded variation. Math. Comput. Modelling 45(5-6), 617–624 (2007)
Kasana, H.S., Prasad, G., Agrawal, P.N., Sahai, A.: Modified Szasz operators. Proceedings of Conf. on Math. Anal. Appl., Kuwait, 1985, Pergamon, Oxford, 29-42 (1988)
Lupaş, A.: The approximation by means of some linear positive operators. In: Müller, M.W., Felten, M., Mache, D.H. (eds.) Approximation theory, Proceedings of the International Dortmund Meeting on Approximation Theory, Berlin, Germany, 1995 (1995)
Miheşan, V.: Gamma approximating operators. Creat. Math. Inform. 17(3), 466–472 (2008)
Mazhar, S.M., Totik, V.: Approximation by modified szász operators. Acta Sci. Math. 49(1-4), 257–269 (1985)
Özarslan, M.A., Aktuǧlu, H.: Local approximation properties for certain King type operators. Filomat 27(1), 173–181 (2013)
Özarslan, M.A., Duman, O., Kaanoǧlu, C.: Rates of convergence of certain King-type operators for functions with derivative of bounded variation. Math. Comput. Modelling 52(1-2), 334–345 (2010)
Sucu, S.: Dunkl analogue of szász operators. Appl. Math. Comput. 244, 42–48 (2014)
Szász, O.: Generalization of S. Bernstein’s polynomials to the infinite interval. J. Research Nat. Bur. Standards 45, 239–245 (1950)
Varma, S., Taşdelen, F.: Szász type operators involving Charlier polynomials. Math. Comput. Modelling 56(5-6), 118–122 (2012)
Yüksel, I., Ispir, N.: Weighted approximation by a certain family of summation integral-type operators. Comput. Math. Appl. 52(10-11), 1463–1470 (2006)
Acknowledgements
The author wishes to thank the referee for her/his suggestions which definitely improved the final form of this paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kajla, A. Approximation Properties of Generalized Szász-Type Operators. Acta Math Vietnam 43, 549–563 (2018). https://doi.org/10.1007/s40306-018-0253-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40306-018-0253-4