Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A brief history of Tarskian algebraic logic with new perspectives and innovations

  • Published:
Bollettino dell'Unione Matematica Italiana Aims and scope Submit manuscript

Abstract

We take a magical tour in algebraic logic, which is the natural interface between universal algebra and mathematical logic, starting from classical results on neat embeddings due to Andreḱa, Henkin, Németi, Monk and Tarski, all the way to recent novel results in algebraic logic using so-called rainbow constructions. Highlighting the connections with graph theory, model theory, and finite combinatorics, this article aspires to present topics of broad interest in a way that is hopefully accessible to a large audience. Other topics dealt with include the interaction of algebraic and modal logic, the so-called (central still active) finitizability problem, Gödels’s incompleteness Theorem in guarded fragments, counting the number of subvarieties of \(\textsf {RCA}_{\omega }\) which is reminiscent of Shelah’s classification theory and the interaction of algebraic logic and descriptive set theory as means to approach Vaught’s conjecture in model theory. The paper has a survey character but it contains new results and new approaches to old ones (such as the interaction of algebraic logic and descriptive set theory).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Vaught’s theorem, an easy consequence of the Henkin–Orey \(\textsf {OTT}\) says that countable atomic theories have countable models.

  2. However, some logicians do not agree to this sweeping statement. Quoting Shelah on this: People say that settling Vaught’s conjecture is the most important problem in Model theory, because it makes us understand countable models of countable theories, which are the most important models. We disagree with all three statements.

  3. A theory is defined to be totally transcendental \(\iff \) every formula has a Morley rank; furthermore, one can prove that in a stable totally transcendental theory each formula has finite Morely rank. If \(\mathcal L\) is a countable first order language, then totally transcendental theories are precisely the \(\aleph _0\) stable ones. However, if \(\mathcal L\) is uncountable, then for an \(\mathcal L\) theory, “being totally transcaendtal ” is not equivalent with “being \(\aleph _0\) stable”. In other words, these two notions are in general distinct. In fact a totally transcendental theory T is stable, if T is stable for every \(\lambda \ge |T|\). For related definitions and further results, cf. [56, Theorem II.3.1 and Conclusion II.3.3 (2) on p. 41–42].

  4. An analogous proof is obtained independently by Gabor Sági.

References

  1. Andréka, H.: Complexity of equations valid in algebras of relations. Ann. Pure Appl. Logic 89, 149–209 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Hirsch, R., Hodkinson, I., Kurucz: On modal logics between \(K\times K\times K\) and \(S5\times S5\times S5\). J. Symbol. Logic 68(3–4), 257–285 (2012)

    Google Scholar 

  3. Andreka, H., van Benthem, J., Németi, I.: Modal languages and bounded fragments of predicate logic. J. Philos. Logic 27, 217–274 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Andréka, H., Givant, S., Mikulas, S., Németi, I., Simon, A.: Notions of density that imply representability in algebraic logic. Ann. Pure Appl. logic 91, 93–190 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Andréka, H., Hodkinson, I., Németi, I.: Finite algebras of relations are representable on finite sets. J. Symbol. Logic 64(1), 243–267 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Andréka, H., Ferenczi, M., Németi, I.: Cylindric-like algebras and algebraic logic. Bolyai Soc. Math. Stud. 22, 20 (2013)

    MATH  Google Scholar 

  7. Andréka, H., Németi, I., Sayed Ahmed, T.: Omitting types for finite variable fragments and complete representations. J. Symbol. Logic. 73, 65–89 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Andréka, H., Németi, I., Sayed-Ahmed, T.: A non-representable qausi-polyadic equality algebra with a representable cylindric reduct. Stud. Math. Hunger. 50(1), 1–16 (2013)

    MATH  Google Scholar 

  9. Andréka, H., Thompson, R.: A Stone type representation theorem for algebras of relations of higher rank. Trans. Am. Math. Soc. 309, 671–682 (1988)

    MathSciNet  MATH  Google Scholar 

  10. Andréka, H., Németi, I.: How many varieties of cylindric algebras are there Trans. Am. Math. Soc. 369, 8903–8937 (2017)

    MATH  Google Scholar 

  11. Assem, M., Sayed Ahmed, T.: An instance of Vaught’ conjecture using algebraic logic (2013) Arxiv:1304.0619

  12. Assem, M., Ahmed, T. S., Sági, G., Sziráki, D.: Morley’s theorem and Vaught’s conjecture via Algebraic logic preprint

  13. Becker, H., Kechris, A.S.: The Descriptive Set Theory of Polish Group Actions. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  14. Benthem, J. V.: Crs and guarded logic, a fruitful contact. In [6]

  15. Biró, B.: Non-finite axiomatizability results in algebraic logic. J. Symbol. Logic 57(3), 832–843 (1992)

    MathSciNet  MATH  Google Scholar 

  16. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  17. Bulian, J., Hodkinson, I.: Bare canonicity of representable cylindric and polyadic algebras. Ann. Pure Appl. Logic 164, 884–906 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Burges, J.P.: Equivalences generated by families of Borel Sets. Proc. Am. Math. Soc. 69, 323–326 (1978)

    MathSciNet  Google Scholar 

  19. Erdös, P.: Graph theory and probability. Can. J. Math. 11, 34–38 (1959)

    MathSciNet  MATH  Google Scholar 

  20. Henkin, L., Monk, J.D., Tarski, A.: Cylindric Algebras Parts I, II. North Holland (1971)

  21. Henkin, L., Monk, J.D., Tarski, A., Andréka, H., Németi, I.: Cylindric Set Algebras. Lecture Notes in Mathematics. Springer, Berlin (1981)

    MATH  Google Scholar 

  22. Hirsch, R., Hodkinson, I.: Complete representations in algebraic logic. J. Symbol. Logic 62(3), 816–847 (1997)

    MathSciNet  MATH  Google Scholar 

  23. Hirsch, R., Hodkinson, I.: Relation algebras by games. Stud. Logic Found. Math. 147, 20 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Hirsch, R., Hodkinson, I.: Strongly representable atom structures of cylindic algebras. J. Symbol. Logic 74, 811–828 (2009)

    MATH  Google Scholar 

  25. Hirsch, R., Hodkinson, I.: Completions and complete representations, in [6] pp. 61–90

  26. Hirsch, R., Hodkinson, I., Maddux, R.: Relation algebra reducts of cylindric algebras and an application to proof theory. J. Symbol. Logic 67(1), 197–213 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Hirsch, R., Sayed Ahmed, T.: The neat embedding problem for algebras other than cylindric algebras and for infinite dimensions. J. Symbol. Logic 79(1), 208–222 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Hodkinson, I.: Atom structures of relation and cylindric algebras. Ann. Pure Appl. Logic 89, 117–148 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Harrington, L.A., Kechris, A.S., Louvau, A.: A Glimm–Effros dichotomy for Borel equivalence relations. J. Am. Math. Soc. 3(4), 903–928 (1990)

    MathSciNet  MATH  Google Scholar 

  30. Maddux, R.: Non finite axiomatizability results for cylindric and relation algebras. J. Symbol. Logic 54, 951–974 (1989)

    MathSciNet  MATH  Google Scholar 

  31. Khaled, M.: Gódel’s Incompleteness Properties and the Guarded Fragment: An Algebraic Approach. Central European University, Budapest (2016). PhD thesis

    Google Scholar 

  32. Khaled, M.: The free non-commutative cylindric algebras are not atomic. Logic J. IGPL 25(5), 673–685 (2017)

    MathSciNet  Google Scholar 

  33. Khaled, M.: For \(2<n<\omega \), the free finitely generate algebras of \({\sf D}_n\) and \({\sf G}_n\) algebras are not atomic (Preprint)

  34. Khaled, M., Sayed Ahmed, T.: Goemetric representation theorems for cylindric-type algebras Quaestiones Mathematicae. Published on line, January 15, (2019)

  35. Kurucz, A.: Representable cylindric algebras and many dimensional modal logics. In: [6], pp. 185–204

  36. Monk, J.D.: Non finitizability of classes of representable cylindric algebras. J. Symbol. Logic 34, 331–343 (1969)

    MATH  Google Scholar 

  37. Sain, I.: Searching for a finitizable algebraization of first order logic. Logic J. IGPL 8(4), 495–589 (2000)

    MathSciNet  MATH  Google Scholar 

  38. Sagi, G.: A completeness theorem for higher order logics. J. Symbol. Logic 65(2), 857–884 (2000)

    MathSciNet  MATH  Google Scholar 

  39. Sági, G., Sziráki, D.: Some variants of Vaught’s conjecture from the perspective of algebraic logic. Logic J. IGPL 20(6), 1064–1082 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Sayed Ahmed, T.: Amalgamation for reducts of polyadic algebras. Algebra Univ. 51, 301–359 (2004)

    MathSciNet  MATH  Google Scholar 

  41. Sayed Ahmed, T.: Algebraic logic, where does it stand today? Bull. Symbol. Logic 11(4), 465–516 (2005)

    MathSciNet  MATH  Google Scholar 

  42. Sayed Ahmed, T.: Weakly representable atom structures that are not strongly representable, with an application to first order logic. Math. Logic Q. 54(3), 294–306 (2008)

    MathSciNet  MATH  Google Scholar 

  43. Sayed Ahmed, T.: Completions, Complete representations and Omitting types. In: [6], pp. 186–205

  44. Sayed Ahmed, T.: Neat reducts and neat embeddings in cylindric algebras. In: [6], pp. 105–134

  45. Sayed Ahmed, T.: The class of completely representable polyadic algebras of infinite dimensions is elementary. Algebra Univ. 72(1), 371–390 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Sayed Ahmed, T.: On notions of representability for cylindric-polyadic algebras and a solution to the finitizability problem for first order logic with equality. Math. Logic Q. 61(6), 418–447 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Sayed Ahmed, T.: Splitting methods in algebraic logic: Proving results on non-atom-canonicity, non-finite axiomatizability and non-first order definability for cylindric and relation algebras (2015) arXiv:1503.02189

  48. Sayed Ahmed, T.: Yet some more non finite axiomatizability results for algebras of relations and ways to avoid them. Stud. Math. Hungar. 53(3), 322–378 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Sayed Ahmed, T.: Various notions of representability for cylindric and polyadic algebras. Stud. Math. Hungar. 56(3), 335–363 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Sayed Ahmed, T.: Representations of bounded distributive lattices as the continous sections of sheaves based on the Preistly and Zarski topologies (2019). arXiv:1304.0612

  51. Sayed Ahmed, T.: Back and forth between algebraic geometry, algebraic logic, sheaves and forcing (2019) arXiv:1811.01754

  52. Sayed Ahmed, T.: Hilbert’s tenth problem, Gödel’s incompleteness, Halting problem, a unifying perspective (2019) arXiv:1812.00990

  53. Sayed Ahmed, T.: Algebraic logic and Topoi a philosophical holistic approach. Int. J. Algebra 12(2), 43–137 (2020)

    Google Scholar 

  54. Sayed Ahmed, T., Németi, I.: On neat reducts of algebras of logic. Stud. Logica 68(2), 229–262 (2001)

    MathSciNet  MATH  Google Scholar 

  55. Simon, A.: Representing all cylindric algebras by twisting. On a problem of Henkin In [6]

  56. Shelah, S.: Classification theory: and the number of non-isomorphic models. Stud. Logic Found. Math. 20, 20 (1990)

    MATH  Google Scholar 

  57. Tarski, A., Givant, S.: Tarski’s system of geometry. Bull. Symbol. Logic 5(2), 175–214 (1999)

    MathSciNet  MATH  Google Scholar 

  58. Venema, Y.: Rectangular games. J. Symbol. Logic 63(4), 1549–1564 (1998)

    MathSciNet  MATH  Google Scholar 

  59. Venema, Y.: Atom structures and Sahlqvist equations. Algebra Univ. 38, 185–199 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Sayed Ahmed.

Ethics declarations

Conflict of interest

On behalf of all authors, Tarek Sayed Ahmed states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, T.S. A brief history of Tarskian algebraic logic with new perspectives and innovations. Boll Unione Mat Ital 13, 381–416 (2020). https://doi.org/10.1007/s40574-020-00240-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40574-020-00240-x

Keywords

Mathematics Subject Classification