Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Stability and Stabilization of Delayed Fuzzy Semi-Markov Jump Systems with Incomplete Transition Rates and Quadratic Fuzzy Lyapunov Matrix via Quantized Control Design

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This study examines the stability and stabilization issues of a type of state-quantized, time-varying delayed (TVD) Takagi–Sugeno (T–S) fuzzy semi-Markov jump systems. First of all, in order to obtain more information of T–S fuzzy systems, an augmented fuzzy Lyapunov–Krasovskii Functional (LKF) is formatted including a quadratic fuzzy Lyapunov matrix (QFLM). In addition, a novel quadratic polynomial inequality (QPI) is applied to narrow the estimation gap for TVD and a quantized controller is used to reduce control accuracy. Then, the sufficient conditions for system stability and stabilization via quantized controller are attained on the basis of Lyapunov stability theory and linear matrix inequalities method. Finally, three examples show how the constructed controller can successfully regulate the examined system and the proposed technique is less conservative than those of the former ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. An, J., Li, T., Wen, G., et al.: New stability conditions for uncertain T–S fuzzy systems with interval time-varying delay. Int. J. Control Autom. Syst. 10(3), 490–497 (2012)

    MATH  Google Scholar 

  2. Bernal, M., Guerra, T.M.: Generalized nonquadratic stability of continuous-time Takagi–Sugeno models. IEEE Trans. Fuzzy Syst. 18(4), 815–822 (2010)

    MATH  Google Scholar 

  3. Cheng, J., Park, J.H., Cao, J., et al.: Hidden Markov model-based nonfragile state estimation of switched neural network with probabilistic quantized outputs. IEEE Trans. Cybern. 50(5), 1900–1909 (2019)

    MATH  Google Scholar 

  4. Cai, L., Xiong, L., Cao, J., et al.: State quantized sampled-data control design for complex-valued memristive neural networks. J. Franklin Inst. 359(9), 4019–4053 (2022)

    MathSciNet  MATH  Google Scholar 

  5. Datta, R., Saravanakumar, R., Dey, R., et al.: Improved stabilization criteria for Takagi–Sugeno fuzzy systems with variable delays. Inf. Sci. 579, 591–606 (2021)

    MathSciNet  MATH  Google Scholar 

  6. Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)

    MATH  Google Scholar 

  7. Guerra, T.M., Bernal, M.: A way to escape from the quadratic framework. In: 2009 IEEE International Conference on Fuzzy Systems. IEEE, pp. 784–789 (2009)

  8. Guerra, T.M., Bernal, M., Guelton, K., et al.: Non-quadratic local stabilization for continuous-time Takagi–Sugeno models. Fuzzy Sets Syst. 201, 40–54 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Jadbabaie, A.: A reduction in conservatism in stability and 52 gain analysis of Takagi–Sugeno fuzzy systems via linear matrix inequalities. IFAC Proc. Vol. 32(2), 5451–5455 (1999)

    MATH  Google Scholar 

  10. Jiang, Z.P., Teng-Fei, L.: Quantized nonlinear control-a survey. Acta Autom. Sin. 39(11), 1820–1830 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001)

    MATH  Google Scholar 

  12. Kao, Y., Xie, J., Zhang, L., et al.: A sliding mode approach to robust stabilisation of Markovian jump linear time-delay systems with generally incomplete transition rates. Nonlinear Anal. Hybrid Syst 17, 70–80 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Li, G., Peng, C., Xie, X., et al.: On stability and stabilization of T–S fuzzy systems with time-varying delays via quadratic fuzzy Lyapunov matrix. IEEE Trans. Fuzzy Syst. 17, 1450 (2021)

    MATH  Google Scholar 

  14. Lian, Z., He, Y., Zhang, C.K., et al.: Further robust stability analysis for uncertain Takagi–Sugeno fuzzy systems with time-varying delay via relaxed integral inequality. Inf. Sci. 409, 139–150 (2017)

    MATH  Google Scholar 

  15. Liang, C.Y., Su, J.P.: A new approach to the design of a fuzzy sliding mode controller. Fuzzy Sets Syst. 139(1), 111–124 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Liu, Y., Lee, S.M.: Stability and stabilization of Takagi–Sugeno fuzzy systems via sampled-data and state quantized controller. IEEE Trans. Fuzzy Syst. 24(3), 635–644 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Larson, R.: Optimum quantization in dynamic systems. IEEE Trans. Autom. Control 12(2), 162–168 (1967)

    MATH  Google Scholar 

  18. Lin, Z., Huijun, G., Karimi, H.R.: Robust stability and stabilization of uncertain T–S fuzzy systems with time-varying delay: an input-output approach. IEEE Trans. Fuzzy Syst. 21(5), 883–897 (2013)

    MATH  Google Scholar 

  19. Li, G., Peng, C., Fei, M., et al.: Local stability conditions for T–S fuzzy time-delay systems using a homogeneous polynomial approach. Fuzzy Sets Syst. 385, 111–126 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Ma, X., Liu, B., Jia, X.C.: On estimating neuronal states of delayed neural networks based on canonical Bessel-Legendre inequalities. J. Franklin Inst. 357(13), 9025–9044 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Mozelli, L.A., Souza, F.O., Palhares, R.M.: A new discretized Lyapunov-Krasovskii functional for stability analysis and control design of time-delayed T–S fuzzy systems. Int. J. Robust Nonlinear Control 21(1), 93–105 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Meredef, I., Hammoudi, M.Y., Betka, A., et al.: Stability and stabilization of TS fuzzy systems via line integral Lyapunov fuzzy function. Electronics 11(19), 3136 (2022)

    MATH  Google Scholar 

  23. Oliveira, R.C.L.F., Peres, P.L.D.: Parameter-dependent LMIs in robust analysis: characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations. IEEE Trans. Autom. Control 52(7), 1334–1340 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Peng, C., Ma, S., Xie, X.: Observer-based non-PDC control for networked T–S fuzzy systems with an event-triggered communication. IEEE Trans. Cybern. 47(8), 2279–2287 (2017)

    MATH  Google Scholar 

  25. Peng, C., Tian, Y.C., Tian, E.: Improved delay-dependent robust stabilization conditions of uncertain T–S fuzzy systems with time-varying delay. Fuzzy Sets Syst. 159(20), 2713–2729 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Peng, C., Han, Q.L.: Delay-range-dependent robust stabilization for uncertain T–S fuzzy control systems with interval time-varying delays. Inf. Sci. 181(19), 4287–4299 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Qiu, L., Zhang, B., Xu, G., et al.: Mixed H2/H\(\infty\) control of Markovian jump time-delay systems with uncertain transition probabilities. Inf. Sci. 373, 539–556 (2016)

    MATH  Google Scholar 

  28. Rhee, B.J., Won, S.: A new fuzzy Lyapunov function approach for a Takagi–Sugeno fuzzy control system design. Fuzzy Sets Syst. 157(9), 1211–1228 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Souza, F.O., Campos, V.C.S., Palhares, R.M.: On delay-dependent stability conditions for Takagi–Sugeno fuzzy systems. J. Franklin Inst. 351(7), 3707–3718 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Shen, M., Park, J.H.: H\(\infty\) filtering of Markov jump linear systems with general transition probabilities and output quantization. ISA Trans. 63, 204–210 (2016)

    MATH  Google Scholar 

  31. Su, X., Wu, L., Shi, P., et al.: A novel approach to output feedback control of fuzzy stochastic systems. Automatica 50(12), 3268–3275 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Tian, E., Yue, D., Zhang, Y.: Delay-dependent robust H\(\infty\) control for T–S fuzzy system with interval time-varying delay. Fuzzy Sets Syst. 160(12), 1708–1719 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1, 116–132 (1985)

    MATH  Google Scholar 

  34. Tanaka, K., Hori, T., Wang, H.O.: A fuzzy Lyapunov approach to fuzzy control system design. In: Proceedings of the 2001 American Control Conference (Cat. No. 01CH37148). IEEE, 6, 4790–4795 (2001)

  35. Wang, H.O., Tanaka, K.: Fuzzy control systems design and analysis: a linear matrix inequality approach[M]. Wiley, New York (2004)

    MATH  Google Scholar 

  36. Wu, T., Xiong, L., Cheng, J., et al.: New results on stabilization analysis for fuzzy semi-Markov jump chaotic systems with state quantized sampled-data controller. Inf. Sci. 521, 231–250 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Wang, L., Lam, H.K.: Local stabilization for continuous-time Takagi–Sugeno fuzzy systems with time delay. IEEE Trans. Fuzzy Syst. 26(1), 379–385 (2016)

    MATH  Google Scholar 

  38. Xia, X., Li, R., An, J.: On delay-fractional-dependent stability criteria for Takagi–Sugeno fuzzy systems with interval delay. Math. Probl. Eng. 2014, 1 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Xiong, L., Tian, J., Liu, X.: Stability analysis for neutral Markovian jump systems with partially unknown transition probabilities. J. Franklin Inst. 349(6), 2193–2214 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Zou, R., Yang, T., Liu, F., et al.: Stability and stabilization of delayed fuzzy systems via a novel quadratic polynomial inequality. J. Franklin Inst. 359(16), 8758–8776 (2022)

    MathSciNet  MATH  Google Scholar 

  41. Zeng, H.B., Park, J.H., Xia, J.W., et al.: Improved delay-dependent stability criteria for T–S fuzzy systems with time-varying delay. Appl. Math. Comput. 235, 492–501 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Zhao, Y., Gao, H., Lam, J., et al.: Stability and stabilization of delayed T–S fuzzy systems: a delay partitioning approach. IEEE Trans. Fuzzy Syst. 17(4), 750–762 (2008)

    MATH  Google Scholar 

  43. Zhang, L., Boukas, E.K.: Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities. Automatica 45(2), 463–468 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, Z., Lin, C., Chen, B.: New results on H\(\infty\) filter design for nonlinear time-delay systems via fuzzy line-integral approach. Int. J. Fuzzy Syst. 18(5), 904–913 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Zhang, H., Qiu, Z., Cao, J., et al.: Event-triggered synchronization for neutral-type semi-Markovian neural networks with partial mode-dependent time-varying delays. IEEE Trans. Neural Netw Learn Syst 31(11), 4437–4450 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Zeng, H.B., Lin, H.C., He, Y., et al.: Improved negativity condition for a quadratic function and its application to systems with time-varying delay. IET Control Theory Appl. 14(18), 2989–2993 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 12061088, the Basic Research Youth Fund Project of Yunnan Science and Technology Department under Grant 202201AU070046, and the Scientific Research Fund Project of Yunnan Provincial Department of Education under Grant 2022J0447.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianglin Xiong.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Xiong, L., Zhang, H. et al. Stability and Stabilization of Delayed Fuzzy Semi-Markov Jump Systems with Incomplete Transition Rates and Quadratic Fuzzy Lyapunov Matrix via Quantized Control Design. Int. J. Fuzzy Syst. 26, 2300–2322 (2024). https://doi.org/10.1007/s40815-024-01736-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-024-01736-w

Keywords