Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A Discrete Isoperimetric Optimal Control Approach for BCG Immunotherapy in Superficial Bladder Cancer: Discussions on Results of Different Optimal Doses

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Mathematical models devised for the study of the tumor-immune interactions and also, the optimization of clinical agents, are of increasing relevance for applications in cancer research. For our study case, it is important to note that immunotherapies in cancer are often recommended to be followed at discrete-times rather than injecting immunotherapeutic agents continuously. Thus, we are more interested in this present paper to propose a discrete-time mathematical model of superficial bladder cancer (sBCa), with a discrete control incorporated, for seeking the optimal dose of bacillus Calmette–Guérin (BCG) immunotherapy used in the treatment of sBCa. This research article retakes the problem of optimal control studied in Elmouki and Saadi (Int J Dyn Control 1–7, 2014) but in its discrete version, to investigate, the mathematical resolution of such models when an isoperimetric constraint is added, used to fix the total amount of BCG injected in the bladder along the period of BCG intravesical therapy, to an experimental constant dosage amount of BCG, tolerable by patients, based on information from Cheng et al. (ANZ J Surg 74:569–572, 2004). The optimal control characterization is provided based on a discretized maximum principle and the isoperimetric problem is solved numerically using a discrete iterative progressive-regressive scheme combined with the secant method. We include a discussions section in the end of the paper for the analysis of the consequences related to the different administration strategies obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cheng, C.W., Ng, M.T., Chan, S.Y., Sun, W.H.: Low dose BCG as adjuvant therapy for superficial bladder cancer and literature review. ANZ. J. Surg. 74(7), 569–572 (2004)

    Article  Google Scholar 

  2. Elmouki, I., Saadi, S.: BCG immunotherapy optimization on an isoperimetric optimal control problem for the treatment of superficial bladder cancer. Int. J. Dynam. Control., 1–7 (2014)

  3. Ploeg, M., Katja, K.H.A., Kiemeney, A.L.: The present and future burden of urinary bladder cancer in the world. World J. Urol. 27(3), 289-1-7293 (2009)

  4. Ferlay, J., Bray, F., Pisani, P., Parkin, D.M.: Cancer Incidence. International Agency for Research on Cancer Press, Mortality and Prevalence Worldwide; Lyon (2001)

    Google Scholar 

  5. Parkin, D.M.: The global burden of urinary bladder cancer. Scand. J. Urol. 42(s218), 12–20 (2008)

    Article  Google Scholar 

  6. Saadi, S., Elmouki, I., Hamdache, A.: Impulsive control dosing BCG immunotherapy for non-muscle invasive bladder cancer. Int. J. Dyn. Control 3(3), 1–11 (2015)

    MathSciNet  Google Scholar 

  7. Knowles, M.A.: Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese. Carcinogenesis 2006(27), 361–73 (2006)

    Article  Google Scholar 

  8. Nseyo, U.O., Lamm, D.L.: Immunotherapy of bladder cancer. Semin. Surg. Oncol. 13, 342-1-7349 (1997)

  9. Southgate, J., Masters, J.R., Trejdosiewicz, L.K.: Culture of Epithelial Cells. In: Freshney, R.I., Freshney, M.G. (eds.) Culture of Human Urothelium, p. 381-1-7400. John Wiley, New York (2002)

  10. Sylvester, R.J., van der Meijden, A.P., Oosterlinck, W.: Predicting recurrence and progression in individual patients with stage TaT1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur. Urol. 49, 466-1-777 (2006)

  11. Lamm, D.L., Mcgee, W.R., Hale, K.: Bladder cancer: current optimal intravesical treatment. Urol. Nurs. 25(5), 323-1-7332 (2005)

  12. Mamat, M., Nugraha, E.S., Kartono, N.: Numerical analysis of mathematical modelling of tumour growth with immunotherapy. Chemotherapy and Immunotherapy-Chemotherapy. J. Sustain. Manag. 5(1), 66–76 (2010)

    MATH  Google Scholar 

  13. Green, D., Shariat, S.F.: Bladder tumors: molecular aspects and clinical management. In: Lokeshwar, V.B., Merseburger, A.S., Hautmann, S.H. (eds.) Cancer Drug Discovery and Development, p. 355. Humana Press Inc. (2010). doi:10.1111/j.1464-410X.2011.10617.x

  14. Urdaneta, G., Solsona, E., Palou, J.: Intravesical chemotherapy and BCG for the treatment of bladder cancer: evidence and opinion. Eur. Urol. Suppl. 2008(7), 542–547 (2008)

    Article  Google Scholar 

  15. van der Meijden, A.P., Sylvester, R.J., Oosterlinck, W., Hoeltl, W., Bono, A.V.: Maintenance bacillus Calmette-Guerin for Ta T1 bladder tumors is not associated with increased toxicity: results from a European Organisation for Research and Treatment of Cancer Genito-Urinary Group Phase III Trial. Eur. urol. 44(4), 429–434 (2003)

    Article  Google Scholar 

  16. Bunimovich-Mendrazitskya, S., Shochat, E., Stone, L.: Mathematical model of BCG immunotherapy in superficial bladder cancer. Bull. Math. Biol. 69(6), 1847–1870 (2007). doi:10.1007/s11538-007-9195-z

    Article  MATH  MathSciNet  Google Scholar 

  17. Bunimovich-Mendrazitsky, S., Byrne, H., Stone, L.: Mathematical model of pulsed immunotherapy for superficial bladder cancer. Bull. Math. Biol. 70, 2055–2076 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Elmouki, I., Saadi, S.: Quadratic and linear controls developing an optimal treatment for the use of BCG immunotherapy in superficial bladder cancer. Optim. Control Appl. Methods 37(1), 176–189 (2015). doi:10.1002/oca.2161

    Article  MATH  MathSciNet  Google Scholar 

  19. Archuleta, J., Mullens, P., Primm, T.P.: The relationship of temperature to desiccation and starvation tolerance of the Mycobacterium avium complex. Arch. Microbiol. 178, 311–314 (2002)

    Article  Google Scholar 

  20. Kuznetsov, V.A., Makalkin, I.A., Taylor, M.A., Perelson, A.S.: Nonlinear dynamics of immunogenic tumours: parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56, 295321 (1994)

    Article  MATH  Google Scholar 

  21. Wigginton, J., Kirschner, D.: A model to predict cell-mediated immune regulatory mechanisms during human infection with mycobacterium tuberculosis. J. Immunol. 166, 19511967 (2001)

    Google Scholar 

  22. Lämmle, M., Beer, A., Settles, M., Hanning, C., Schwaibold, H., Drews, C.: Reliability of MR imaging-based virtual cystoscopy in the diagnosis of cancer of the urinary bladder. Am. J. Roentgenol. 178, 14831488 (2002)

    Article  Google Scholar 

  23. Spratt, J.A., Von Fournier, D., Spratt, J.S., Weber, E.E.: Decelerating growth and human breast cancer. Cancer 71(6), 20132019 (1993)

    Google Scholar 

  24. Zakary, O., Rachik, M., Elmouki, I.: On the impact of awareness programs in HIV/AIDS prevention: an SIR model with optimal control. Int. J. Comput. Appl. 133(9), 1–6 (2016)

    Google Scholar 

  25. Hamdache, A., Elmouki, I., Saadi, S.: Two therapeutic approaches for the treatment of HIV infection in AIDS stage. Appl. Math. Sci. 7(105), 5243–5257 (2013)

    Google Scholar 

  26. Zakary, O., Larrache, A., Rachik, M., Elmouki, I.: Effect of awareness programs and travel-blocking operations in the control of HIV/AIDS outbreaks: a multi-domains SIR model. Adv. Differ. Equ. 2016(1), 1–17 (2016)

    Article  MathSciNet  Google Scholar 

  27. Zakary, O., Rachik, M., Elmouki, I.: A multi-regional epidemic model for controlling the spread of Ebola: awareness, treatment, and travel-blocking optimal control approaches; Math. Methods Appl. Sci. (2016). doi:10.1002/mma.4048

    MATH  Google Scholar 

  28. Zakary, O., Rachik, M., Elmouki, I.: On the analysis of a multi-regions discrete SIR epidemic model: an optimal control approach. Int. J. Dyn. Control, 1–14 (2016). doi:10.1007/s40435-016-0233-2

  29. Zakary, O., Rachik, M., Elmouki, I.: A new analysis of infection dynamics: multi-regions discrete epidemic model with an extended optimal control approach; Int. J. Dyn. Control, 1–10 (2016). doi:10.1007/s40435-016-0264-8

  30. Zouhri, S., Saadi, S., Elmouki, I., Hamdache, A., Rachik, M.: Mixed immunotherapy and chemotherapy of tumors: optimal control approach. IJCSI Int. J. Comput. Sci. 10, 4 (2013)

    Google Scholar 

  31. Hamdache, A., Saadi, S., Elmouki, I.: Nominal and neighboring-optimal control approaches to the adoptive immunotherapy for cancer. Int. J. Dyn. Control 1–16 (2015). doi:10.1007/s40435-015-0205-y

  32. Hamdache, A., Saadi, S., Elmouki, I.: Free terminal time optimal control problem for the treatment of HIV infection. Int. J. Optim. Control Theor. Appl. (IJOCTA) 6(1), 33–51 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  33. Hamdache, A., Elmouki, I., Saadi, S.: Optimal control with an isoperimetric constraint applied to cancer immunotherapy. Int. J. Comput. Appl. 94(15) (2014)

  34. Burden, T., Ernstberger, J., Renee Fister, K.: Optimal control applied to immunotherapy. Discret. Contin. Dyn. S. B 4(1), 135146 (2004)

    MATH  MathSciNet  Google Scholar 

  35. Wandi, D., Hendon, R., Cathey, B., Lancaster, E., Germick, R.: Discrete time optimal control applied to pest control problems. Involv. J. Math. 7(4), 479–489 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  36. Dabbs, K.: Optimal control in discrete pest control models. In: Thesis. trace.tennessee.edu. (2010)

  37. Sethi, S.P., Thompson, G.L.: What is optimal control theory?. Springer, Berlin (2000)

    Google Scholar 

  38. Lenhart, S., Workman, J.: Optimal Control Applied to Biological Models. Chapman Hall/CRC, Boca Raton (2007)

    MATH  Google Scholar 

  39. Gumel, A.B., Lenhart, S.: Modeling Paradigms and Analysis of Disease Transmission Models, vol. 75. American Mathematical Society, Providence (2010)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilias Elmouki.

Additional information

This work is supported by the Systems Theory Network (Réseau Théorie des Systèmes), and Hassan II Academy of Sciences and Technologies-Morocco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkama, M., Rachik, M. & Elmouki, I. A Discrete Isoperimetric Optimal Control Approach for BCG Immunotherapy in Superficial Bladder Cancer: Discussions on Results of Different Optimal Doses. Int. J. Appl. Comput. Math 3 (Suppl 1), 1–18 (2017). https://doi.org/10.1007/s40819-017-0337-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0337-1

Keywords