Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Hybrid Direct–Indirect Approach for Solving the Singular Optimal Control Problems of Finite and Infinite Order

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

This paper presents a hybrid approach to solve singular optimal control problems. It combines the direct Euler method with a modified indirect shooting method. The presented method circumvents the main difficulties and drawbacks of both the direct and indirect methods, when applied to the singular optimal control problems. This method does not require a priori knowledge of the switching structure of the solution and it can be applied to finite or infinite order singular optimal control problems. It provides not only an approximate optimal solution for the problem but, remarkably, it also produces the switching times. We illustrate the features of this new approach treating numerically through two optimal control problems, one of finite order and the other with infinite order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aronna MS, Bonnans JF, Martinon P (2013) A shooting algorithm for optimal control problems with singular arcs. J Optim Theory Appl 158(2):419–459

    Article  MathSciNet  MATH  Google Scholar 

  • Azhmyakov V, Juarez R, Pickl S (2015) On the local convexity of singular optimal control problems associated with the switched—mode dynamic systems. IFAC-PapersOnLine 48(25):271–276

    Article  Google Scholar 

  • Betts J (1994) Issues in the direct transcription of optimal control problems to sparse nonlinear programs. In: Bulirsch R, Kraft D (eds) Computational optimal control. ISNM International Series of Numerical Mathematics, vol 115. Birkhuser, Basel, pp 3–17

  • Betts J (2010) Practical methods for optimal control and estimation using nonlinear programming, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  • Betts JT, Huffman WP (1992) Application of sparse nonlinear programming to trajectory optimization. J Guid Control Dyn 15(1):198–206

    Article  MATH  Google Scholar 

  • Betts JT, Huffman WP (1993) Path-constrained trajectory optimization using sparse sequential quadratic programming. J Guid Control Dyn 16(1):59–68

    Article  MATH  Google Scholar 

  • Bonnans F, Martinon P, Trélat E (2008) Singular arcs in the generalized Goddard’s problem. J Optim Theory Appl 139(2):439–461

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Y, Desrochers AA (1993) Minimum-time control laws for robotic manipulators. Int J Control 57(1):1–27

    Article  MathSciNet  MATH  Google Scholar 

  • Elnagar G, Kazemi M, Razzaghi M (1995) The pseudospectral legendre method for discretizing optimal control problems. IEEE Trans Autom Control 40(10):1793–1796

    Article  MathSciNet  MATH  Google Scholar 

  • Goddard RH (1920) A method of reaching extreme altitudes. Nature 105:809–811

    Article  Google Scholar 

  • Kirk DE (2012) Optimal control theory: an introduction. Courier Dover Publications, Mineola

    Google Scholar 

  • Lamnabhi-Lagarrigue F (1987) Singular optimal control problems: on the order of a singular arc. Syst Control Lett 9(2):173–182

    Article  MathSciNet  MATH  Google Scholar 

  • Ledzewicz U, Maurer H, Schättler H (2011) Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. Math Biosci Eng 8(2):307–323

    Article  MathSciNet  MATH  Google Scholar 

  • Ledzewicz U, Schättler H (2008) Analysis of optimal controls for a mathematical model of tumour anti-angiogenesis. Optim Control Appl Methods 29(1):41–57

    Article  MathSciNet  Google Scholar 

  • Lewis RM (1980) Definitions of order and junction conditions in singular optimal control problems. SIAM J Control Optim 18(1):21–32

    Article  MathSciNet  MATH  Google Scholar 

  • Luus R (1992) On the application of iterative dynamic programming to singular optimal control problems. IEEE Trans Autom Control 37(11):1802–1806

    Article  MathSciNet  MATH  Google Scholar 

  • Luus R, Okongwu ON (1999) Towards practical optimal control of batch reactors. Chem Eng J 75(1):1–9

    Article  Google Scholar 

  • Marzban HR, Hoseini SM (2015) Numerical treatment of non-linear optimal control problems involving piecewise constant delay. IMA J Math Control Inf. doi:10.1093/imamci/dnv025

  • Maurer H (1976) Numerical solution of singular control problems using multiple shooting techniques. J Optim Theory Appl 18(2):235–257

    Article  MathSciNet  MATH  Google Scholar 

  • Maurer H, Osmolovskii N (2013) Second-order conditions for optimal control problems with mixed control-state constraints and control appearing linearly. In: 2013 IEEE 52nd annual conference on decision and control (CDC), pp 514–519

  • Oberle H, Sothmann B (1999) Numerical computation of optimal feed rates for a fed-batch fermentation model. J Optim Theory Appl 100(1):1–13

    Article  MATH  Google Scholar 

  • Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF (1962) The mathematical theory of optimal processes. Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt. Interscience Publishers John Wiley & Sons, Inc., New York

  • Powers WF, McDanell JP (1971) Switching conditions and a synthesis technique for the singular saturn guidance problem. J Spacecr Rockets 8(10):1027–1032

    Article  Google Scholar 

  • Razmjooy N, Ramezani M (2016) Analytical solution for optimal control by the second kind Chebyshev polynomials expansion. Iran J Sci Technol Trans A (in press)

  • von Stryk O, Bulirsch R (1992) Direct and indirect methods for trajectory optimization. Ann Oper Res 37(1):357–373. doi:10.1007/BF02071065

    Article  MathSciNet  MATH  Google Scholar 

  • Vossen G (2010) Switching time optimization for bang-bang and singular controls. J Optim Theory Appl 144(2):409–429

    Article  MathSciNet  MATH  Google Scholar 

  • Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1, Ser. A):25–57

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shamsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foroozandeh, Z., Shamsi, M. & Do Rosário De Pinho, M. A Hybrid Direct–Indirect Approach for Solving the Singular Optimal Control Problems of Finite and Infinite Order. Iran J Sci Technol Trans Sci 42, 1545–1554 (2018). https://doi.org/10.1007/s40995-017-0176-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0176-2

Keywords