Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Bayesian Estimation for 3-Component Mixture of Generalized Exponential Distribution

  • Research paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

This paper presents the Bayesian analysis of 3-component mixture of generalized exponential distribution. The Bayesian analysis and maximum likelihood estimation of five parameters have been performed by assuming type-I right censored data. Monte Carlo simulation has been adopted for the comparison of Bayes estimates, posterior risks, maximum likelihood estimates and maximum likelihood risks. Furthermore, the study assesses the performance of Bayes and maximum likelihood estimates by using different sample sizes, proportion of mixture components, censoring rates and loss functions. The Bayes estimates are examined by using non-informative Jeffreys and uniform prior under square error loss function, precautionary loss function and DeGroot loss function. The maximum likelihood risks are obtained by using the Fisher information matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2, 3
Fig. 4
Fig. 5
Fig. 6, 7
Fig. 8
Fig. 9
Fig. 10, 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Al-Bakri N (2015) A comparison of machine learning and non-machine learning methods in email filtering. J Sci 5(2):93–95

    Google Scholar 

  • Aslam M, Tahir M, Hussain Z, Al-Zahrani B (2015) A 3-component mixture of Rayleigh distributions: properties and estimation in Bayesian framework. PLOS ONE May 20, 2015. https://doi.org/10.1371/journal.pone.0126183

  • Ali S, Aslam M, Kazmi SMA (2011) Improved informative prior for the mixture of Laplace distribution under different loss functions. J Reliab Stat Stud 4(2):57–82

    MATH  Google Scholar 

  • Ali S, Aslam M, Kazmi SMA (2012) Bayesian estimation of the mixture of generalized exponential distribution: a versatile lifetime model in industrial processes. J Chin Inst Ind Eng 29(4):246–269

    Google Scholar 

  • Basu S, Basu AP, Mukhopadhyay C (1999) Bayesian analysis for masked system failure data using non-identical Weibull models. J Stat Plann Inf 78:255–275

    Article  MathSciNet  MATH  Google Scholar 

  • Berger JO (1985) Statistical decision theory and Bayesian analysis, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Besag J, Green E, Higdon D, Mengersen K (1995) Bayesian computation and stochastic systems (with discussion). Stat Sci 10:3–66

    Article  MATH  Google Scholar 

  • DeGroot MH (2005) Optimal statistical Decisions, vol 82. Wiley, New York

    MATH  Google Scholar 

  • Dey S, Zhang C, Asgharzadeh A, Ghorbannezhad M (2017) Comparisons of methods of estimation for the NH distribution. Ann Data Sci 4(4):441–455

    Article  Google Scholar 

  • Gauss CF (1810) Method des Moindres Carres Memoire sur la combination des observations. Translated by J. Bertrand (1955). Mallet-Bachelier, Paris

  • Gupta DR, Kundu D (1999) Generalized exponential distributions. Aust N Zeal J 41:173–188

    MathSciNet  MATH  Google Scholar 

  • Gupta DR, Kundu D (2001) Generalized exponential distributions different method of estimations. J Stat Comput Simul 69(4):315–338

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta DR, Kundu D (2003) Discriminating between Weibull and generalized exponential distributions. Comput Stat Data Anal 43:179–196

    Article  MathSciNet  MATH  Google Scholar 

  • Harris CM (1983) On finite mixtures of geometric and negative binomial distributions. Commun Stat-Theory Methods 12:187–1007

    Article  MathSciNet  Google Scholar 

  • Jaheen ZF (2004) Empirical Bayes inference for generalized exponential distribution based on records. Commun Stat Theory Methods 33(8):1851–1861

    Article  MathSciNet  MATH  Google Scholar 

  • Jeffreys H (1964) Theory of probability, 3rd edn. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Jordan M (2004) Graphical models. Stat Science (to appear)

  • Kass R, Raftery A (1995) Bayes factors. J Am Stat Assoc 90(430):773–795

    Article  MathSciNet  MATH  Google Scholar 

  • Kass RE, Wasserman L (1996) The selection of prior distributions by formal rules. J Am Stat Assoc 91(435):1343–1370

    Article  MATH  Google Scholar 

  • Kazmi SMA, Aslam M, Ali S (2011) A note on the maximum likelihood estimators for the mixture of Maxwell distributions using Type-I censored scheme. Open Stat Probab J 3:31–35

    Article  MathSciNet  MATH  Google Scholar 

  • Kazmi SMA, Aslam M, Ali S (2012) On the Bayesian estimation for two-component mixture of Maxwell distribution assuming type-I censored data. Int J Appl Sci Technol 2(1):197–218

    Google Scholar 

  • Kazmi SMA, Aslam M, Ali S, Abbas N (2013) Selection of suitable prior for the Bayesian mixture of a class of lifetime distributions under type-I censored datasets. J Appl Stat 40(8):1639–1658

    Article  MathSciNet  Google Scholar 

  • Kanji KG (1985) A mixture model for wind shear data. J Appl Stat 12:49–58

    Article  Google Scholar 

  • Kundu D, Gupta DR (2008) Generalized exponential distributions: Bayesian estimation. Comput Stat Data Anal 52:1873–1883

    Article  MathSciNet  MATH  Google Scholar 

  • Kundu D, Gupta DR (2009) Bayesian inference and life testing plans for generalized exponential distribution. Sci China, Ser A Math 52:1373–1388

    Article  MathSciNet  MATH  Google Scholar 

  • Lavine M, Schervish MJ (1999) Bayes factors: what they are and what they are not. Am Stat 53(2):119–122

    MathSciNet  Google Scholar 

  • Legendre AM (1806) “Nouvelles méthodes pour la determination des orbites des cometes”, Apéndice: Sur la méthode des moindres carrés. Courcier Louis, Francia

    Google Scholar 

  • McLachlan G, Peel D (2000) Finite mixture models. Wiley, New York

    Book  MATH  Google Scholar 

  • Mendenhall W, Hader AR (1958) Estimation of parameters of mixed exponentially distributed failure time distributions from censored life test data. Biometrika 45:1207–1212

    Article  MathSciNet  MATH  Google Scholar 

  • Raqab MZ, Ahsanullah M (2001) Estimation of the location and scale parameters of generalized exponential distribution based on order statistics. J Stat Comput Simul 69:109–124

    Article  MathSciNet  MATH  Google Scholar 

  • Raqab MZ, Madi MT (2005) Bayesian inference for the generalized exponential distribution. J Stat Comput Simul 75(10):841–852

    Article  MathSciNet  MATH  Google Scholar 

  • Richardson S, Green P (1997) On Bayesian analysis of mixtures with an unknown number of components (with discussion). J R Stat 59:731–792

    Article  MATH  Google Scholar 

  • Robert C (2001) The Bayesian choice, 2nd edn. Springer Science Business Media, LLC, New York, NY

    Google Scholar 

  • Sarhan AM (2007) Analysis of incomplete, censored data in competing risks models with generalized exponential distributions. IEEE Trans Reliab 56:132–138

    Article  Google Scholar 

  • Tahir M, Aslam M, Hussain Z (2016) Estimation of parameters of the 3-component mixture of Pareto distributions using type-I right censoring under Bayesian paradigm. J Nat Sci Found Sri Lanka 44(3):327–343

    Google Scholar 

  • Tahir M, Aslam M, Hussain Z, Abbas N (2017) On the finite mixture of exponential, Rayleigh and Burr type-XII distributions: estimation of parameters in Bayesian framework. Electr J Appl Stat Anal Technol 10(1):271–293

    MathSciNet  Google Scholar 

  • Thompson RD, Basu AP (1996) Asymmetric loss functions for estimating system reliability. In: Bayesian analysis in statistics and econometrics, Wiley, New York

  • Varian HR (1975) A Bayesian approach to real estate assessment. In: Finberg SE, Zellner A (eds) Studies in Bayesian econometrics and statistics in honor of Leonard J. Savege. North Holland, Amsterdam, 195–208

  • Zheng G (2002) Fisher information matrix in type -II censored data from exponentiated exponential family. Biom J 44:353–357

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor in Chief and referees for valuable comments which greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Mohsin Ali Kazmi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1034 kb)

Appendix

Appendix

See Tables 15, 16, 17, 18, 19 and 20.

Table 15 MLE and Bayes estimates using uniform prior under SELF, PLF and DLF with \(\lambda_{1} = 0.25,\lambda_{2} = 0.50, \lambda_{3} = 0.75\), \(p_{1} = 0.20, p_{2} = 0.65\) and \(T = 0.3 ,0.7\)
Table 16 MLE and Bayes estimates using Jeffreys prior under SELF, PLF and DLF with \(\lambda_{1} = 0.25,\lambda_{2} = 0.50, \lambda_{3} = 0.75\), \(p_{1} = 0.20, p_{2} = 0.65\) and \(T = 0.3 ,0.7\)
Table 17 MLE and Bayes estimates using uniform prior under SELF, PLF and DLF with \(\lambda_{1} = 0.75,\lambda_{2} = 0.50, \lambda_{3} = 0.25\), \(p_{1} = 0.65, p_{2} = 0.20\) and \(T = 0.3 ,0.7\)
Table 18 MLE and Bayes estimates using Jeffreys prior under SELF, PLF and DLF with \(\lambda_{1} = 0.75,\lambda_{2} = 0.50, \lambda_{3} = 0.25\), \(p_{1} = 0.65, p_{2} = 0.20\) and \(T = 0.3 ,0.7\)
Table 19 MLE and Bayes estimates using uniform prior under SELF, PLF and DLF with \(\lambda_{1} = 0.50,\;\lambda_{2} = 0.50, \;\lambda_{3} = 0.50\), \(p_{1} = 0.40, p_{2} = 0.40\) and \(T = 0.3 ,0.7\)
Table 20 MLE and Bayes estimates using Jeffreys prior under SELF, PLF and DLF with \(\lambda_{1} = 0.50,\;\lambda_{2} = 0.50,\; \lambda_{3} = 0.50\), \(p_{1} = 0.40, p_{2} = 0.40\) and \(T = 0.3 ,0.7\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazmi, S.M.A., Aslam, M. Bayesian Estimation for 3-Component Mixture of Generalized Exponential Distribution. Iran J Sci Technol Trans Sci 43, 1761–1788 (2019). https://doi.org/10.1007/s40995-018-0625-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-018-0625-6

Keywords

Mathematical Subject Classification