Abstract
Persistent homology is a powerful mathematical tool that summarizes useful information about the shape of data allowing one to detect persistent topological features while one adjusts the resolution. However, the computation of such topological features is often a rather formidable task necessitating the sub-sampling the underlying data. To remedy this, we develop an efficient quantum computation of persistent Betti numbers, which track topological features of data across different scales. Our approach employs a persistent Dirac operator whose spectrum relates to that of the persistent combinatorial Laplacian, and thus allows us to recover the persistent Betti numbers which capture the persistent features of data. In addition, our algorithm can also extract the non-harmonic spectra of the Laplacian, which can be used for data analysis as well. We also test our algorithm on a point cloud data.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Adcock, A., Carlsson, E., Carlsson, G.: The ring of algebraic functions on persistence bar codes. Homol. Homot. Appl. 18(1), 381–402 (2016)
Akhalwaya, I.Y., Ubaru, S., Clarkson, K.L., Squillante, M.S., Jejjala, V., He, Y.H., Naidoo, K., Kalantzis, V., Horesh, L.: Towards quantum advantage on noisy quantum computers (2022)
Akhalwaya, I.Y., He, Y.H., Horesh, L., Jejjala, V., Kirby, W., Naidoo, K., Ubaru, S.: Representation of the fermionic boundary operator. Phys. Rev. A 106, 022407 (2022). https://doi.org/10.1103/PhysRevA.106.022407
Ameneyro, B., Siopsis, G., Maroulas, V.: 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC), pp. 387–392. IEEE (2022)
Bauer, U.: Ripser (2015). https://github.com/Ripser/ripser
Bendich, P., Marron, J.S., Miller, E., Pieloch, A., Skwerer, S.: Persistent homology analysis of brain artery trees. Ann. Appl. Stat. 10(1), 198–218 (2016)
Berry, D.W., Su, Y., Gyurik, C., King, R., Basso, J., Barba, A.D.T., Rajput, A., Wiebe, N., Dunjko, V., Babbush, R.: Analyzing prospects for quantum advantage in topological data analysis (2023)
Binchi, J., Merelli, E., Rucco, M., Petri, G., Vaccarino, F.: jHoles: a tool for understanding biological complex networks via clique weight rank persistent homology. Electron. Notes Theoret. Comput. Sci. 306, 5–18 (2014)
Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002)
Cade, C., Crichigno, P.M.: Complexity of supersymmetric systems and the cohomology problem (2021). arXiv preprint arXiv:2107.00011
Carlsson, G., De Silva, V., Morozov, D.: Proceedings of the twenty-fifth annual symposium on Computational geometry, pp. 247–256. ACM (2009)
Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)
Carlsson, G., De Silva, V.: Zigzag persistence. Found. Comput. Math. 10(4), 367–405 (2010)
Carlsson, E., Carlsson, G., Silva, V.D.: An algebraic topological method for feature identification. Int. J. Comput. Geom. 16(4), 291–314 (2006)
Chen, C., Kerber, M.: Proceedings 27th European Workshop on Computational Geometry, vol. 11 (2011)
Chen, J., Qiu, Y., Wang, R., Wei, G.W.: Persistent laplacian projected omicron ba. 4 and ba. 5 to become new dominating variants. Comput. Biol. Med. 151, 106262 (2022)
Chung, M., Hanson, J., Ye, J., Davidson, R., Pollak, S.: Persistent homology in sparse regression and its application to brain morphometry. IEEE Trans. Med. Imaging 34(9), 1928–1939 (2015)
Crichigno, M., Kohler, T.: Clique homology is qma1-hard (2022). arXiv preprint arXiv:2209.11793
De Silva, V., Ghrist, R.: Homological sensor networks. Notices Am. Math. Soc. 54(1) (2007)
De Silva, V., Ghrist, R.: Coordinate-free coverage in sensor networks with controlled boundaries via homology. Int. J. Robot. Res. 25(12), 1205–1222 (2006)
De Silva, V., Ghrist, R.: Coverage in sensor networks via persistent homology. Algeb. Geom. Topol. 7(1), 339–358 (2007)
Dlotko, P., Ghrist, R., Juda, M., Mrozek, M.: Distributed computation of coverage in sensor networks by homological methods. Appl. Algebra Eng. Commun. Comput. 23(1–2), 29–58 (2012)
Dridi, R., Alghassi, H.: Homology computation of large point clouds using quantum annealing (2016). arXiv:1512.09328
Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society (2010)
Edelsbrunner, H.: International Workshop on Graph-Based Representations in Pattern Recognition, pp. 182–183. Springer, New York (2013)
Emrani, S., Gentimis, T., Krim, H.: Persistent homology of delay embeddings and its application to wheeze detection. IEEE Signal Process. Lett. 21(4), 459–463 (2014)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100, 160501 (2008). https://doi.org/10.1103/PhysRevLett.100.160501
Giovannetti, V., Lloyd, S., Maccone, L.: Architectures for a quantum random access memory. Phys. Rev. A 78(5), 052310 (2008)
Grover, L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329–4332 (1998). https://doi.org/10.1103/PhysRevLett.80.4329
Guillemard, M., Iske, A.: Signal filtering and persistent homology: an illustrative example. In: Proceedings of Sampling Theory and Applications (SampTA’11) (2011)
Gunn, S., Kornerup, N.: Review of a quantum algorithm for betti numbers (2019). arXiv preprint arXiv:1906.07673
Hayakawa, R.: Quantum algorithm for persistent betti numbers and topological data analysis (2021). arXiv preprint arXiv:2111.00433
Huang, H., et al.: Demonstration of topological data analysis on a quantum processor. Optica 5, 193 (2018)
Khasawneh, F.A., Munch, E.: Chatter detection in turning using persistent homology. Mech. Syst. Signal Process. 70, 527–541 (2016)
Kusano, G., Fukumizu, K., Hiraoka, Y.: Persistence weighted Gaussian kernel for topological data analysis (2016). arXiv:1601.01741
Lloyd, S., Garnerone, S., Zanardi, P.: Quantum algorithms for topological and geometric analysis of data. Nat. Commun. 7(1), 1–7 (2016)
Marchese, A., Maroulas, V.: Information Fusion (FUSION). In: 2016 19th International Conference on, pp. 1377–1381. ISIF (2016)
Marchese, A., Maroulas, V.: Signal classification with a point process distance on the space of persistence diagrams. Adv. Data Anal. Classif. 12(3), 657–682 (2018)
Maroulas, V., Micucci, C.P., Nasrin, F.: Bayesian topological learning for classifying the structure of biological networks. Bayesian Anal. pp. 1–26 (2021)
Maroulas, V., Nasrin, F., Oballe, C.: A Bayesian framework for persistent homology. SIAM J. Math. Data Sci. 2(1), 48–74 (2020)
McArdle, S., Gilyén, A., Berta, M.: A streamlined quantum algorithm for topological data analysis with exponentially fewer qubits (2022)
Mémoli, F., Wan, Z., Wang, Y.: Persistent laplacians: properties, algorithms and implications. SIAM J. Math. Data Sci. 4(2), 858–884 (2022)
Meng, Z., Xia, K.: Persistent spectral-based machine learning (perspect ml) for protein-ligand binding affinity prediction. Sci. Adv. 7(19), eabc5329 (2021). https://doi.org/10.1126/sciadv.abc5329
Mike, J., Sumrall, C.D., Maroulas, V., Schwartz, F.: Nonlandmark classification in paleobiology: computational geometry as a tool for species discrimination. Paleobiology 1–11 (2016)
Mike, J., Maroulas, V.: Combinatorial hodge theory for equitable kidney paired donation. Found. Data Sci. 1(1), 87–101 (2019)
Morozov, D.: Dionysus, a C++ library for computing persistent homology (2007)
Munch, E.: Applications of persistent homology to time varying systems. Ph.D. thesis, Duke University (2013)
Nicolau, M., Levine, A.J., Carlsson, G.: Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proc. Natl. Acad. Sci. 108(17), 7265–7270 (2011)
Perea, J.A., Harer, J.: Sliding windows and persistence: An application of topological methods to signal analysis. Found. Comput. Math. 15(3), 799–838 (2015)
Perea, J.A., Deckard, A., Haase, S.B., Harer, J.: Sw1pers: sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data. BMC Bioinform. 16(1), 257 (2015)
Pereira, C.M., de Mello, R.F.: Persistent homology for time series and spatial data clustering. Expert Syst. Appl. 42(15), 6026–6038 (2015)
Rebentrost, P., Steffens, A., Marvian, I., Lloyd, S.: Quantum singular-value decomposition of nonsparse low-rank matrices. Phys. Rev. A 97(1), 012327 (2018)
Rouse, D., Watkins, A., Porter, D., Harer, J., Bendich, P., Strawn, N., Munch, E., DeSena, J., Clarke, J., Gilbert, J.: SPIE Defense+ Security, pp. 94740L-94740L. International Society for Optics and Photonics (2015)
Schmidhuber, A., Lloyd, S.: Complexity-theoretic limitations on quantum algorithms for topological data analysis (2022). arXiv preprint arXiv:2209.14286
Seversky, L.M., Davis, S., Berger, M.: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 59–67 (2016)
Siopsis, G.: Quantum topological data analysis with continuous variables. Found. Data Sci1. 4(1), 419–431 (2019)
Townsend, J., Micucci, C., Hymel, J., Maroulas, V., Vogiatzis, K.D.: Representation of molecular structures with persistent homology for machine learning applications in chemistry. Nat. Commun. 11, 3230 (2020)
Ubaru, S., Akhalwaya, I.Y., Squillante, M.S., Clarkson, K.L., Horesh, L.: Quantum topological data analysis with linear depth and exponential speedup (2021)
Vasudevan, R., Ames, A., Bajcsy, R.: Persistent homology for automatic determination of human-data based cost of bipedal walking. Nonlinear Anal. Hybrid Syst 7(1), 101–115 (2013)
Venkataraman, V., Ramamurthy, K.N., Turaga, P.: Persistent homology of attractors for action recognition (2016). arXiv:1603.05310
Wang, R., Nguyen, D.D., Wei, G.W.: Persistent spectral graph. Int. J. Numer. Methods Biomed. Eng. 36(9), e3376 (2020)
Wie, C.R.: A quantum circuit to construct all maximal cliques using grover search algorithm (2017). arXiv preprint arXiv:1711.06146
Xia, K., Feng, X., Tong, Y., Wei, G.W.: Persistent homology for the quantitative prediction of fullerene stability. J. Comput. Chem. 36(6), 408–422 (2015)
Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)
Acknowledgements
The authors would like to thank two anonymous reviewers for their comments that substantially imporved this paper. Research supported by the National Science Foundation award DMS-2012609. G. Siopsis also acknowledges the Army Research Office award W911NF-19-1-0397, and the National Science Foundation award OMA-1937008.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A: Membership oracle
We can encode the order k of a simplex \(\sigma \) in a state \(|k\rangle \) (\(k=0,1,\dots ,n-1\)) by starting from \(|0\rangle \) and performing permutations \(0\rightarrow 1 \rightarrow \dots \rightarrow n-1 \rightarrow 0\), conditional upon the corresponding digit of \(\sigma \) being 1. Thus, we perform k permutations mapping \(|0\rangle \rightarrow |k\rangle \). This can be implemented efficiently because the permutation is a 1-sparse matrix.
To encode the scale \(\epsilon \) we need information on the data points that can be stored in quantum parallel in QRAM, if it is available, and accessed efficiently (Giovannetti et al. 2008a, b). For any \(i,j = 1,2,\dots , n\), \(\text{ QRAM }|i\rangle |j\rangle |0\rangle =|i\rangle |j\rangle |d(i,j)\rangle \), where d(i, j) is the distance between points i and j. Notice that the size of the memory is only logarithmic on the number of data points. We introduce a register of qubits to record the parameter \(\epsilon \) as \(|\epsilon \rangle \). We need to know when \(d(i,j) \le \epsilon \) to form a VR complex. This information will be stored in a qubit initially in the state \(|0\rangle \), and flipped if the membership condition is satisfied. This is implemented with a unitary test that uses the qubit registers storing d(i, j) and \(\epsilon \) as controls to flip the last qubit,
Next, in order to know if \(\sigma \in S^{\epsilon }\), we must check if \(d(i,j) \le \epsilon \) for all (i, j) pairs such that \(v_i = v_j = 1\). To this end, we make \({\mathcal {O}} (k^2)\) calls to QRAM, where k is the dimension of \(\sigma \). For each pair (i, j), we use \(|\sigma \rangle \) as control to call QRAM and apply the test provided \(v_i = v_j = 1\), \( \text {QRAM}^\dagger U_{\text {test}}^\epsilon \text {QRAM} |\sigma \rangle |i\rangle |j\rangle |0\rangle |\epsilon \rangle |0\rangle = |\sigma \rangle |i\rangle |j\rangle |0\rangle |\epsilon \rangle |a^\epsilon (i,j)\rangle . \) The membership of \(\sigma \) in the VR complex, \(S^\epsilon \), is decided if for all (i, j) we end up with \(a^\epsilon (i,j) =1\).
Appendix B: Grover’s algorithm
Here we review the salient features of amplitude amplification (Brassard et al. 2002) and Grover’s search algorithm (Grover 1998) which are needed for the implementation of the projection \(P^\epsilon \) (Eq. (12)), for completeness.
Let \(|\Psi _k\rangle \in \mathcal {H}_{k}\) be a state in the span of the k-simplex states. We wish to construct the normalized projected state \(|\Psi _k^\epsilon \rangle = \frac{P^\epsilon |\Psi _k\rangle }{\left\Vert P^\epsilon |\Psi _k\rangle \right\Vert }\in \mathcal {H}_{k}^{\epsilon }\), assuming that it exists. To this end, we introduce the unitary operator \( U_G = -U_{\Psi _k} U^\epsilon \), with \( U_{\Psi _k} = I - 2 |\Psi _k\rangle \langle \Psi _k| \) and \(U^\epsilon = I - 2P^\epsilon \). Since \(\mathcal {H}_{k}^{\epsilon }\) is a closed subspace, we may write \(|\Psi _k\rangle \) as \( |\Psi _k\rangle = \sin \theta |\Psi _k^\epsilon \rangle + \cos \theta |\bar{\Psi }_k^\epsilon \rangle \), where \(|\Psi _{k}^{\epsilon }\rangle \in \mathcal {H}_{k}^{\epsilon }\) and \( |\bar{\Psi }_{k}^{\epsilon }\rangle \in \mathcal {H}_{k}^{\epsilon \perp } \). Notice that \(\sin \theta = \left\Vert P^\epsilon |\Psi _k\rangle \right\Vert \). We can think of \(|\Psi _k\rangle \) as the vector \(( \sin \theta , \cos \theta )^{T}\) in the two-dimensional space spanned by \(\{ |\Psi _k^\epsilon \rangle , |\bar{\Psi }_k^\epsilon \rangle \}\), then \(U_G\) acts as a rotation by an angle \(2\theta \). Applying it K times, we obtain the state \( U_G^K |\Psi _k\rangle = \sin (2K+1)\theta |\Psi _k^\epsilon \rangle + \cos (2K+1)\theta |\bar{\Psi }_k^\epsilon \rangle \). This is close to the desired state for \((2K+1)\theta \approx \frac{\pi }{2}\). Therefore, the number of Grover steps needed is \(K = \lfloor \frac{\pi }{4\theta } \rfloor \). As discussed in Schmidhuber and Lloyd (2022), K could be exponential on the number of data points if \(\left\Vert P^{\epsilon } |\Psi _{k}\rangle \right\Vert \) is small, for example when the number of simplices present in \(S_{k}^{\epsilon }\) is only polynomial on the number data points.
Appendix C: Implementation of an exponential operator
Relying on Rebentrost et al. (2018), we review the construction of the exponential operator \(e^{it B_k^{\epsilon ,\epsilon '}[\xi ]}\), where the shifted Dirac matrix \(B_k^{\epsilon ,\epsilon '}[\xi ]\) is defined in Eq. (17). This construction is needed for the phase estimation algorithm described in Sect. 3.4 (See Eq. (20)). We start by constructing the \(\text {SWAP}_{{B}}\) operator from the shifted Dirac operator \(B_k^{\epsilon ,\epsilon '}[\xi ]\),
where \(|\psi \rangle = |0\rangle |\psi _{0}\rangle + |1\rangle |\psi _{1}\rangle + |2\rangle |\psi _{2}\rangle \), with \(|\psi _0\rangle \in {\mathcal {H}}_{k-1}\), \(|\psi _1\rangle \in {\mathcal {H}}_{k}\), \(|\psi _2\rangle \in {\mathcal {H}}_{k+1}\), and similarly for \(|\phi \rangle \). Let \(\varvec{N}\) be the dimensionality of the Hilbert space in which \(|\psi \rangle \) and \(|\phi \rangle \) live and \(\{ |e_a\rangle , a = 1,\dots ,\varvec{N} \}\) an orthonormal basis for the Hilbert space under consideration. With the choice \(\xi = 1\), all matrix elements of the \(\varvec{N}\times \varvec{N}\) matrix \(B_k^{\epsilon ,\epsilon '}[\xi ](e_a,e_b)\in \{ 0, \pm 1 \}\) and the matrix \({\mathcal {S}}\) can be efficiently constructed. Then we construct the exponential \(\text {SWAP}_{{B}}\) operator \(e^{i\Delta t {\mathcal {S}}}\), which can be done efficiently because \({\mathcal {S}}\) is a one-sparse matrix. Next, we act on the state \(|\varvec{s}\rangle \otimes |\Psi \rangle \), where \(|\varvec{s}\rangle \) is the uniform state
and \(|\Psi \rangle \) is an arbitrary state in the subspace on which \(B_k^{\epsilon ,{{\epsilon }^{\prime }}}[\xi ]\) acts. After tracing over the space in which \(|\varvec{s}\rangle \) lives, we obtain \( \text {tr}_1 \left[ e^{-i \Delta t {\mathcal {S}}} |\varvec{s}\rangle \langle \varvec{s}| \otimes |\Psi \rangle \langle \Psi | e^{i\Delta t{\mathcal {S}}} \right] = e^{-i B_k^{\epsilon ,{{\epsilon }^{\prime }}}[\xi ] \Delta t/\varvec{N}} |\Psi \rangle \langle \Psi | e^{i B_k^{\epsilon ,{{\epsilon }^{\prime }}}[\xi ] \Delta t/\varvec{N}} + {\mathcal {O}} (\Delta t^2), \) which projects onto the state \(e^{-i B_k^{\epsilon ,{{\epsilon }^{\prime }}}[\xi ] \Delta t/\varvec{N}} |\Psi \rangle \) up to second order in \(\Delta t\). The desired state \(e^{-it B_k^{\epsilon ,{{\epsilon }^{\prime }}}[\xi ]} |\Psi \rangle \) for finite t can be obtained by repeating the above construction as many times as needed.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ameneyro, B., Maroulas, V. & Siopsis, G. Quantum persistent homology. J Appl. and Comput. Topology 8, 1961–1980 (2024). https://doi.org/10.1007/s41468-023-00160-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41468-023-00160-7
Keywords
- Topological data analysis
- Quantum persistent homology
- Persistent Dirac operator
- Persistent combinatorial Laplacian