Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Implications of urbanization on the seasonal dynamics and long-term trends in the thermal climate of a city in the Himalayan foothills of India

  • Published:
Journal of Geovisualization and Spatial Analysis Aims and scope Submit manuscript

Abstract

This study examines the seasonal and long-term variations in land surface temperature over Dehradun, a rapidly expanding city in the Himalayan region of India. MODIS (Terra and Aqua) satellite data from 2000 to 2019 were utilized to assess (i) seasonal variations in surface urban heat island intensity (SUHII) and (ii) trends in land surface temperature (LST). Positive SUHII was observed over Dehradun throughout the year. However, the magnitude of SUHII varies both diurnally and seasonally, with greater intensity during daytime and the rainy season. Furthermore, our analysis reveals that spatio-temporal variations in LST over Dehradun are significantly influenced by land use-land cover (LULC) variables and elevation. Specifically, open and dense forest areas exert a negative influence, while urban built-up areas have a positive impact on LST. We observed that areas in Dehradun and its surrounding regions that underwent a transition in LULC from agriculture/open forest to urban built-up categories experienced the most significant increase in LST. This rise occurred despite a general warming trend observed in night-time LST across the entire study region, possibly due to global warming. Finally, our study demonstrates an increasing trend in annual cooling degree days, the number of cooling days, and electricity consumption in Dehradun. Therefore, our results suggest that urbanization in Dehradun has resulted in increased warming, which in turn, has steadily contributed to the growth in electricity consumption in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data used in this article are sourced exclusively from open-access repositories. All data outputs generated during the study are publicly available and are properly cited in this paper.

References

  • Air temperature data (n.d.). https://www.visualcrossing.com/. Accessed 10 Sept 2023

  • Akbari H, Pomerantz M, Taha H (2001) Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol Energy 70(3):295–310

    Article  Google Scholar 

  • Arnfield AJ (1982) Estimation of diffuse irradiance on sloping, obstructed surfaces: An error analysis. Archiv Meteorol, Geophysics, and Bioclimatology Series B 30(4):303–320. https://doi.org/10.1007/BF02324672

    Article  Google Scholar 

  • Ball F (1956) The Theory of Strong Katabatic Winds. Aust J Phys 9(3):373. https://doi.org/10.1071/ph560373

    Article  Google Scholar 

  • Bhatnagar M, Mathur J, Garg V (2018) Determining base temperature for heating and cooling degree-days for India. J Build Eng 18:270–280

    Article  Google Scholar 

  • Borah P, Singh MK, Mahapatra S (2015) Estimation of degree-days for different climatic zones of North-East India. Sustain Cities Soc 14:70–81

    Article  Google Scholar 

  • Buyantuyev A, Wu J (2010) Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc Ecol 25:17–33

    Article  Google Scholar 

  • Carnahan WH, Larson RC (1990) An Analysis of an Urban Heat Sink. Remote Sens Environ 33(1):65–71. https://doi.org/10.1016/0034-4257(90)90056-R

    Article  Google Scholar 

  • Chakraborty T, Hsu A, Manya D, Sheriff G (2020) A spatially explicit surface urban heat island database for the United States: Characterization, uncertainties, and possible applications. ISPRS J Photogramm Remote Sens 168:74–88

    Article  Google Scholar 

  • Chettry V (2022) Geospatial measurement of urban sprawl using multi-temporal datasets from 1991 to 2021: case studies of four Indian medium-sized cities. Environ Monit Assess 194(12):860

    Article  Google Scholar 

  • Chettry V (2023) A Critical Review of Urban Sprawl Studies. J Geovis Spat Anal 7:28. https://doi.org/10.1007/s41651-023-00158-w

    Article  Google Scholar 

  • Christenson M, Manz H, Gyalistras D (2006) Climate warming impact on degree-days and building energy demand in Switzerland. Energy Convers Manage 47(6):671–686

    Article  Google Scholar 

  • Cox DTC, Maclean IMD, Gardner AS, Gaston KJ (2020) Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. Glob Change Biol 26(12):7099–7111. https://doi.org/10.1111/gcb.15336

    Article  Google Scholar 

  • Dame J, Schmidt S, Müller J, Nüsser M (2019) Urbanisation and socio-ecological challenges in high mountain towns: Insights from Leh (Ladakh), India. Landsc Urban Plan 189:189–199

    Article  Google Scholar 

  • De Rosa M, Bianco V, Scarpa F, Tagliafico LA (2015) Historical trends and current state of heating and cooling degree days in Italy. Energy Convers Manage 90:323–335

    Article  Google Scholar 

  • Dehradun Population (n.d.) https://www.census2011.co.in/census/district/578-dehradun.html. Accessed 23 May 2023

  • Diksha KA, Lal P (2022) Analysing climatic variability and extremes events in the Himalayan regions focusing on mountainous urban agglomerations. Geocarto Int 37(26):14148–14170

    Article  Google Scholar 

  • Dutta K, Basu D, Agrawal S (2022) Evaluation of seasonal variability in magnitude of urban heat islands using local climate zone classification and surface albedo. Int J Environ Sci Technol 19(9):8677–8698. https://doi.org/10.1007/s13762-021-03602-w

    Article  Google Scholar 

  • Estoque RC, Murayama Y (2017) Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015). ISPRS J Photogramm Remote Sens 133:18–29. https://doi.org/10.1016/j.isprsjprs.2017.09.008

    Article  Google Scholar 

  • Ganasri BP, Dwarakish GS (2015) Study of land use/land cover dynamics through classification algorithms for Harangi catchment area, Karnataka State, India. Aquatic Procedia 4:1413–1420

    Article  Google Scholar 

  • Garg V, Chandrasen K, Mathur J, Tetali S, Jawa A (2011) Development and performance evaluation of a methodology, based on distributed computing, for speeding energyplus simulation. J Build Perform Simul 4(3):257–270. https://doi.org/10.1080/19401493.2010.531142

    Article  Google Scholar 

  • Goward SN, Masek JG, Williams DL, Irons JR, Thompson RJ (2001) The Landsat 7 mission: Terrestrial research and applications for the 21st century. Remote Sens Environ 78(1–2):3–12. https://doi.org/10.1016/S0034-4257(01)00262-0

    Article  Google Scholar 

  • Gu RY, Lo MH, Liao CY, Jang YS, Juang JY, Huang CY, Chang SC, Hsieh CI, Chen YY, Chu H, Chang KY (2021) Early Peak of Latent Heat Fluxes Regulates Diurnal Temperature Range in Montane Cloud Forests. J Hydrometeorol 22(9):2475–2487. https://doi.org/10.1175/JHM-D-21-0005.1

    Article  Google Scholar 

  • Habeeb R, Gupta Y, Chinwan H et al (2019) Assessing Demographic and Water Sensitivities Arising due to Urban Water Insecurity in Haldwani, Uttarakhand (India): a GIS-Based Spatial Analysis. J Geovis Spat Anal 3:8. https://doi.org/10.1007/s41651-019-0031-4

    Article  Google Scholar 

  • Hansen J, Sato M (2004) Greenhouse gas growth rates. Proc Natl Acad Sci 101(46):16109–16114

    Article  CAS  Google Scholar 

  • Hawkins E, Ortega P, Suckling E, Schurer A, Hegerl G, Jones P, ..., Van Oldenborgh GJ (2017) Estimating changes in global temperature since the preindustrial period. Bull Am Meterol Soc 98(9):1841–1856

  • Hirano A, Welch R, Lang H (2003) Mapping from ASTER stereo image data: DEM validation and accuracy assessment. ISPRS J Photogramm Remote Sens 57(5–6):356–370. https://doi.org/10.1016/S0924-2716(02)00164-8

    Article  Google Scholar 

  • Hishe H, Giday K, Van Orshoven J, Muys B, Taheri F., Azadi H, ..., Witlox F 2021) Analysis of land use land cover dynamics and driving factors in Desa’a forest in Northern Ethiopia Land use policy 101 105039

  • Jiang F, Li X, Wei B, Hu R, Li Z (2009) Observed trends of heating and cooling degree-days in Xinjiang Province, China. Theoret Appl Climatol 97:349–360

    Article  Google Scholar 

  • Joshi N (2021) Adopting a governance lens to address urban risks in the Uttarakhand Himalayas: The case of Almora India. Int J Disaster Risk Reduct 54;102044. https://doi.org/10.1016/j.ijdrr.2021.102044

  • Khandelwal S, Goyal R, Kaul N, Mathew A (2018) Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. Egyptian Journal of Remote Sensing and Space Science 21(1):87–94. https://doi.org/10.1016/j.ejrs.2017.01.005

    Article  Google Scholar 

  • Kimothi S, Thapliyal A, Gehlot A, Aledaily AN, Bilandi N, Singh R, ..., Akram SV (2023) Spatio-temporal fluctuations analysis of land surface temperature (LST) using Remote Sensing data (LANDSAT TM5/8) and multifractal technique to characterize the urban heat Islands (UHIs). Sustain Energy Technol Assessments 55:102956

  • Kumari P, Garg V, Kumar R, Kumar K (2021) Impact of urban heat island formation on energy consumption in Delhi. Urban Climate 36(January):100763. https://doi.org/10.1016/j.uclim.2020.100763

    Article  Google Scholar 

  • Landsat-7 data (n.d.) https://www.usgs.gov/landsat-missions/landsat-7. Accessed on 15 March 2019

  • Li XX, Norford LK (2016) Evaluation of cool roof and vegetations in mitigating urban heat island in a tropical city, Singapore. Urban Climate 16:59–74. https://doi.org/10.1016/j.uclim.2015.12.002

    Article  Google Scholar 

  • Li X, Zhou Y, Asrar GR, Imhoff M, Li X (2017) The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States. Sci Total Environ 605:426–435

    Article  Google Scholar 

  • Liao D, Zhu H, Jiang P (2021) Study of urban heat island index methods for urban agglomerations (hilly terrain) in Chongqing. Theoret Appl Climatol 143(1–2):279–289. https://doi.org/10.1007/s00704-020-03433-8

    Article  Google Scholar 

  • Lu S, Ju Z, Ren T, Horton R (2009) A general approach to estimate soil water content from thermal inertia. Agric for Meteorol 149(10):1693–1698. https://doi.org/10.1016/j.agrformet.2009.05.011

    Article  Google Scholar 

  • Ma S, Pitman A, Yang J, Carouge C, Evans JP, Hart M, Green D (2018) Evaluating the effectiveness of mitigation options on heat stress for Sydney, Australia. J Appl Meteorol Climatol 57(2):209–220. https://doi.org/10.1175/JAMC-D-17-0061.1

    Article  Google Scholar 

  • Mishra PK, Rai A, Rai SC (2020) Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. Egypt J Remote Sens Space Sci 23(2):133–143

    Google Scholar 

  • Mohajerani A, Bakaric J, Jeffrey-Bailey T (2017) The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J Environ Manage 197:522–538

    Article  Google Scholar 

  • Morshed M, Chakraborty T, Mazumder T (2022) Measuring Dhaka’s Urban Transformation Using Nighttime Light Data. J Geovis Spat Anal 6:25. https://doi.org/10.1007/s41651-022-00120-2

    Article  Google Scholar 

  • Oke TR (1981) Canyon Geometry and the Nocturnal Urban Heat Island: Comparison of Scale Model and Field Observations. J Climatol 1:237–254. https://doi.org/10.1002/joc.3370010304

    Article  Google Scholar 

  • Oke TR (1982) The energetic basis of the urban heat island. Q J R Meteorol Soc 108(455):1–24. https://doi.org/10.1002/qj.49710845502

    Article  Google Scholar 

  • Oke TR, Mills G, Christen A, Voogt JA (2017) Urban climates. Cambridge University Press

    Book  Google Scholar 

  • Oke, T. R. (2010). Urban heat islands. In The Routledge Handbook of urban ecology (pp. 120–131). Routledge

  • Otukei JR, Blaschke, T (2010) Land cover change assessment using decision trees , support vector machines and maximum likelihood classification algorithms. Int J Appl Earth Obs Geoinf, 27–31. https://doi.org/10.1016/j.jag.2009.11.002

  • Pandey P, Kumar D, Prakash A, Masih J, Singh M, Kumar S, Jain VK, Kumar K (2012) A study of urban heat island and its association with particulate matter during winter months over Delhi. Sci Total Environ 414:494–507. https://doi.org/10.1016/j.scitotenv.2011.10.043

    Article  CAS  Google Scholar 

  • Pandey AK, Singh S, Berwal S, Kumar D, Pandey P, Prakash A, Lodhi N, Maithani S, Jain VK, Kumar K (2014) Spatio - temporal variations of urban heat island over Delhi. Urban Climate 10(P1):119–133. https://doi.org/10.1016/j.uclim.2014.10.005

    Article  Google Scholar 

  • Papadopoulos KH, Helmis CG (1999) Evening and morning transition of katabatic flows. Boundary-Layer Meteorology 92:195–227

    Article  Google Scholar 

  • Phiri D, Simwanda M, Salekin S, Ryirenda VR, Murayama Y, Ranagalage M, Oktaviani N, Kusuma HA, Zhang T, Su J, Liu C, Chen WH, Liu H, Liu G, Cavur M, Duzgun HS, Kemec S, Demirkan DC, Chairet R, …, Peerbhay K (2020) Sentinel-2 Data for Land Cover / Use Mapping : A Review. Remote Sens 42(3):14. https://doi.org/10.3390/rs12142291

  • Priyadarsini R (2009) Urban heat island and its impact on building energy consumption. Adv Build Energy Res 3(1):261–270

    Article  Google Scholar 

  • Pu R, Gong P, Michishita R, Sasagawa T (2006) Assessment of multi-resolution and multi-sensor data for urban surface temperature retrieval. Remote Sens Environ 104(2):211–225

    Article  Google Scholar 

  • Pyrgou A, Santamouris M, Livada I (2019) Spatiotemporal analysis of diurnal temperature range: Effect of urbanization, cloud cover, solar radiation, and precipitation. Climate 7(7):1–13. https://doi.org/10.3390/cli7070089

    Article  Google Scholar 

  • Rajagopalan P, Lim KC, Jamei E (2014) Urban heat island and wind flow characteristics of a tropical city. Sol Energy 107:159–170. https://doi.org/10.1016/j.solener.2014.05.042

    Article  Google Scholar 

  • Rana VK, Suryanarayana TMV (2019) Visual and statistical comparison of ASTER, SRTM, and Cartosat digital elevation models for watershed. J Geovis Spat Anal 3:12. https://doi.org/10.1007/s41651-019-0036-z

    Article  Google Scholar 

  • Rieck M, Hohenegger C, van Heerwaarden CC (2014) The influence of land surface heterogeneities on cloud size development. Mon Weather Rev 142(10):3830–3846. https://doi.org/10.1175/MWR-D-13-00354.1

    Article  Google Scholar 

  • Romshoo SA, Rashid I (2014) Assessing the impacts of changing land cover and climate on Hokersar wetland in Indian Himalayas. Arab J Geosci 7:143–160

    Article  Google Scholar 

  • Rongali G, Keshari AK, Gosain AK et al (2018) Split-Window Algorithm for Retrieval of Land Surface Temperature Using Landsat 8 Thermal Infrared Data. J Geovis Spat Anal 2:14. https://doi.org/10.1007/s41651-018-0021-y

    Article  Google Scholar 

  • Saha S, Saha A, Das M, Saha A, Sarkar R, Das A (2021) Analyzing spatial relationship between land use/land cover (LULC) and land surface temperature (LST) of three urban agglomerations (UAs) of Eastern India. Remote Sens Appl Soc Environ 22:100507

    Google Scholar 

  • Schurer AP, Mann ME, Hawkins E, Tett SF, Hegerl GC (2017) Importance of the pre-industrial baseline for likelihood of exceeding Paris goals. Nat Clim Chang 7(8):563–567

    Article  Google Scholar 

  • Sharma A, Singh OP, Saklani MM (2012) Climate of Dehradun. Indian Meteorological Department, Government of India, Ministry of Earth Sciences, Mausam Bhavan, New Delhi, 69

  • Shastri H, Barik B, Ghosh S, Venkataraman C, Sadavarte P (2017) Flip flop of Day-night and Summer-Winter Surface Urban Heat Island Intensity in India. Sci Rep 7:1–8. https://doi.org/10.1038/srep40178

    Article  CAS  Google Scholar 

  • Singh A, Pal S, Kanungo DP (2021) An integrated approach for landslide susceptibility–vulnerability–risk assessment of building infrastructures in hilly regions of India. Environ Dev Sustain 23(4):5058–5095

    Article  Google Scholar 

  • Sobrino JA, El Kharraz MH (1999) Combining afternoon and morning NOAA satellites for thermal inertia estimation 1 Algorithm and its testing with Hydrologic Atmospheric Pilot Experiment-Sahel data. J Geophys Res Atmos 104(D8):9445–9453 https://doi.org/10.1029/1998JD200109

  • Sobrino JA, Oltra-Carrió R, Sòria G, Jiménez-Muñoz JC, Franch B, Hidalgo V, ..., Paganini M (2013) Evaluation of the surface urban heat island effect in the city of Madrid by thermal remote sensing. Int J Remote Sens 34(9–10):3177–3192

  • Strahler AH (1980) The use of prior probabilities in maximum likelihood classification of remotely sensed data. Remote Sens Environ 10(2):135–163. https://doi.org/10.1016/0034-4257(80)90011-5

    Article  Google Scholar 

  • Sun J, Yang J, Zhang C, Yun W, Qu J (2013) Automatic remotely sensed image classification in a grid environment based on the maximum likelihood method. Math Comput Model 58(3–4):573–581

    Article  Google Scholar 

  • Tabassum A, Basak R, Shao W, Haque MM, Chowdhury TA, Dey H (2023) Exploring the relationship between land use land cover and land surface temperature: a case study in Bangladesh and the policy implications for the Global South. J Geovisualization Spat Anal 7(2):25

    Article  Google Scholar 

  • Taha H (1997) Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy Build 25(2):99–103

    Article  Google Scholar 

  • Ukey R, Rai AC (2021) Impact of global warming on heating and cooling degree days in major Indian cities. Energy Build 244:111050

    Article  Google Scholar 

  • Ullah S, Ahmad K, Sajjad RU, Abbasi AM, Nazeer A, Tahir AA (2019) Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower Himalayan region. J Environ Manage 245:348–357

    Article  Google Scholar 

  • Vancutsem C, Ceccato P, Dinku T, Connor SJ (2010) Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens Environ 114(2):449–465

    Article  Google Scholar 

  • Vihma T, Tuovinen E, Savijrvi H (2011) Interaction of katabatic winds and near-surface temperatures in the Antarctic. J. Geophys Res Atmos 116(21):1–14. https://doi.org/10.1029/2010JD014917

    Article  Google Scholar 

  • Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86(3):370–384. https://doi.org/10.1016/S0034-4257(03)00079-8

    Article  Google Scholar 

  • Wan Z, Zhang Y, Zhang Q, Li ZL (2002) Validation of the land-surface temperature products retrieved from terra moderate resolution imaging spectroradiometer data. Remote Sens Environ 83(1–2):163–180. https://doi.org/10.1016/S0034-4257(02)00093-7

    Article  Google Scholar 

  • Weng Q, Fu P, Gao F (2014) Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sens Environ 145:55–67

    Article  Google Scholar 

  • World Urbanization Prospects (2018) https://population.un.org/wup/. Accessed 15 Sept 2022

  • Yuan F, Sawaya KE, Loeffelholz BC, Bauer ME (2005) Land cover classification and change analysis of the Twin Cities (Minnesota) metropolitan area by multitemporal Landsat remote sensing. Remote Sens Environ 98(2–3):317–328. https://doi.org/10.1016/j.rse.2005.08.006

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to acknowledge School of Environmental Sciences (SES), Jawaharlal Nehru University for providing necessary facilities to conduct this study. Authors wish their thanks to Moderate Resolution Imaging Spectroradiometer (MODIS), LANDSAT-7, SENTINEL-2 and ASTER scientific and data support teams, which are maintained to provide data freely. Authors also acknowledge the University Grant Commission of India for providing financial support to research scholars involved in this study.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishan Kumar.

Ethics declarations

Ethics Approval

The methodologies, findings, and conclusions presented here are derived from original research work according to our knowledge and opinion.

Informed Consent

All the co-authors are kept informed during every step of publication processes and all processing is done by their consent.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4483 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Ojha, P.K., Sharma, S.K. et al. Implications of urbanization on the seasonal dynamics and long-term trends in the thermal climate of a city in the Himalayan foothills of India. J geovis spat anal 8, 23 (2024). https://doi.org/10.1007/s41651-024-00178-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41651-024-00178-0

Keywords