Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A hybrid model for heart disease prediction using recurrent neural network and long short term memory

  • Original Research
  • Published:
International Journal of Information Technology Aims and scope Submit manuscript

Abstract

Cardiac and cardiovascular diseases are among the most prevalent and dangerous ailments that influence human health. The detection of cardiac disease in its early stages by the use of early-stage symptoms is a major problem in today’s environment. As a result, there is a demand for a technology that can identify cardiac disease in a non-invasive manner while also being less expensive. In this research we have developed a hybrid deep learning methodology for the categorization of cardiac disease. Classifying synthetic data using RNN and LSTM hybrid approaches has been done using different cross-validations. The system’s performance also be evaluated using a variety of machine learning methods and soft computing approaches. During the classification process, RNN employs three separate activation functions. To balance the data, certain pre-processing methods were used to sort and classify the data. The extraction of features has been done using relational, bigram, and density-based approaches. We employed a variety of machine learning and deep learning methods to assess system performance throughout the trial. The accuracy of each algorithm’s categorization is shown in the results section. As a result, we can say that deep hybrid learning is more accurate than either classic deep learning or machine learning techniques used alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Rani P, Kumar R, Sid NMO, Anurag A (2021) A decision support system for heart disease prediction based upon machine learning. J Reliab Intell Environ 7(3):263–275. https://doi.org/10.1007/s40860-021-00133-6

    Article  Google Scholar 

  2. Assari R, Azimi P, Reza Taghva M (2017) Heart disease diagnosis using data mining techniques. Int J Econ Manag Sci 06(03):750–753. https://doi.org/10.4172/2162-6359.1000415

    Article  Google Scholar 

  3. Krishnaiah V, Srinivas M, Narsimha G, Chandra NS (2014) Diagnosis of heart disease patients using fuzzy classification technique. IEEE Int Conf Comput Commun Technol. https://doi.org/10.1109/ICCCT2.2014.7066746

    Article  Google Scholar 

  4. Mamatha Alex P, Shaji SP (2019) Prediction and diagnosis of heart disease patients using data mining technique. In: Proceedings of the 2019 IEEE international conference on communication and signal processing. ICCSP 2019, pp 848–852. https://doi.org/10.1109/ICCSP.2019.8697977

  5. Jousilahti P, Vartiainen E, Tuomilehto J, Puska P (1999) Sex, age, cardiovascular risk factors, and coronary heart disease. Circulation 99(9):1165–1172. https://doi.org/10.1161/01.cir.99.9.1165

    Article  Google Scholar 

  6. Subhadra K, Vikas B (2019) Neural network based intelligent system for predicting heart disease. Int J Innov Technol Explor Eng 8(5):484–487. [Online]. https://www.researchgate.net/publication/332035370_Neural_network_based_intelligent_system_for_predicting_heart_disease

  7. Ghosh P et al (2021) Efficient prediction of cardiovascular disease using machine learning algorithms with relief and LASSO feature selection techniques. IEEE Access 9:19304–19326. https://doi.org/10.1109/ACCESS.2021.3053759

    Article  Google Scholar 

  8. Razmjooy N, Rashid Sheykhahmad F, Ghadimi N (2018) A hybrid neural network—world cup optimization algorithm for melanoma detection. Open Med 13(1):9–16. https://doi.org/10.1515/med-2018-0002

    Article  Google Scholar 

  9. Swarnalatha GMP (2021) Optimal feature selection through a cluster—based DT learning (CDTL) in heart disease prediction. Evol Intell 14(2):583–593. https://doi.org/10.1007/s12065-019-00336-0

    Article  Google Scholar 

  10. Moallem P, Razmjooy N, Ashourian M (2013) Computer vision-based potato defect detection using neural networks and support vector machine. Int J Robot Autom 28(2):137–145. https://doi.org/10.2316/Journal.206.2013.2.206-3746

    Article  Google Scholar 

  11. Mousavi BS (2011) Digital image segmentation using rule-base classifier. Am J Sci Res 35(35):17–23. [Online]. https://www.academia.edu/38367918/Digital_Image_Segmentation_Using_Rule_Base_Classifier

  12. Amin MS, Chiam YK, Varathan KD (2019) Identification of significant features and data mining techniques in predicting heart disease. Telemat Inform 36:82–93. https://doi.org/10.1016/j.tele.2018.11.007

    Article  Google Scholar 

  13. Kondababu A, Siddhartha V, Kumar BHKB, Penumutchi B (2021) Materials today: proceedings a comparative study on machine learning based heart disease prediction. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.01.475

    Article  Google Scholar 

  14. Singh D, Samagh JS (2020) A comprehensive review of heart disease prediction using machine learning. J Crit Rev 7(12):281–285. https://doi.org/10.31838/jcr.07.12.54

    Article  Google Scholar 

  15. Tama BA, Im S, Lee S (2020) Improving an intelligent detection system for coronary heart disease using a two-tier classifier ensemble. Biomed Res Int. https://doi.org/10.1155/2020/9816142

    Article  Google Scholar 

  16. Youssef MM, Mousa SA, Baloola MO, Fouda BM (2020) The impact of mobile augmented reality design implementation on user engagement. CCIS. Springer book series, vol 1244

  17. Kausar N, Palaniappan S, Samir BB, Abdullah A, Dey N (2016) Systematic analysis of applied data mining based optimization algorithms in clinical attribute extraction and classification for diagnosis of cardiac patients. Intell Syst Ref Libr 96:217–231. https://doi.org/10.1007/978-3-319-21212-8_9

    Article  Google Scholar 

  18. Saranya G, Pravin A (2021) Hybrid global sensitivity analysis based optimal attribute selection using classification techniques by machine learning algorithm. Wirel Pers Commun. https://doi.org/10.1007/s11277-021-08796-3

    Article  Google Scholar 

  19. Ali F et al (2021) Feature optimization by discrete weights for heart disease prediction using supervised learning. Soft Comput 25(3):1821–1831. https://doi.org/10.1007/s00500-020-05253-4

    Article  Google Scholar 

  20. Saranya G, Pravin A (2021) Learning algorithm. Wirel Pers Commun. https://doi.org/10.1007/s11277-021-08796-3

    Article  Google Scholar 

  21. Prakash B, Debnath D, Midhun B (2021) A hybrid machine learning approach to identify coronary diseases using feature selection mechanism on heart disease dataset. Distrib Parallel Databases. https://doi.org/10.1007/s10619-021-07329-y

    Article  Google Scholar 

  22. Ali F et al (2020) A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion. Inf Fusion 63:208–222. https://doi.org/10.1016/j.inffus.2020.06.008

    Article  Google Scholar 

  23. Yazdani A, Varathan KD, Chiam YK, Malik AW, Azman W, Ahmad W (2021) A novel approach for heart disease prediction using strength scores with significant predictors. BMC Med Inform Decis Mak. https://doi.org/10.1186/s12911-021-01527-5

    Article  Google Scholar 

  24. Thanga Selvi R, Muthulakshmi I (2021) An optimal artificial neural network based big data application for heart disease diagnosis and classification model. J Ambient Intell Humaniz Comput 12(6):6129–6139. https://doi.org/10.1007/s12652-020-02181-x

    Article  Google Scholar 

  25. Pandian MSA (2021) Intelligent big data analytics model for efficient cardiac disease prediction with IoT devices in WSN using fuzzy rules. Wirel Pers Commun. https://doi.org/10.1007/s11277-021-08788-3

    Article  Google Scholar 

  26. Muthulakshmi RTSI (2021) An optimal artificial neural network based big data application for heart disease diagnosis and classification model. J Ambient Intell Humaniz Comput 12(6):6129–6139. https://doi.org/10.1007/s12652-020-02181-x

    Article  Google Scholar 

  27. Safa M, Pandian A (2021) Intelligent big data analytics model for efficient cardiac disease prediction with IoT devices in WSN using fuzzy rules. Wirel Pers Commun. https://doi.org/10.1007/s11277-021-08788-3

    Article  Google Scholar 

  28. Shidnal S, Latte MV, Kapoor A (2021) Crop yield prediction: two-tiered machine learning model approach. Int J Inf Technol 13(5):1983–1991. https://doi.org/10.1007/s41870-019-00375-x

    Article  Google Scholar 

  29. Niranjan D, Kavya M, Neethi KT, Prarthan KM, Manjuprasad B (2021) Machine learning based analysis of pulse rate using Panchamahabhutas and Ayurveda. Int J Inf Technol 13(4):1667–1670. https://doi.org/10.1007/s41870-021-00690-2

    Article  Google Scholar 

  30. Nayakwadi N, Fatima R (2021) Automatic handover execution technique using machine learning algorithm for heterogeneous wireless networks. Int J Inf Technol 13(4):1431–1439. https://doi.org/10.1007/s41870-021-00627-9

    Article  Google Scholar 

  31. Mangrulkar A, Rane SB, Sunnapwar V (2021) Automated skull damage detection from assembled skull model using computer vision and machine learning. Int J Inf Technol 13(5):1785–1790. https://doi.org/10.1007/s41870-021-00752-5

    Article  Google Scholar 

  32. Mahajan J, Banal K, Mahajan S (2021) Estimation of crop production using machine learning techniques: a case study of J&K. Int J Inf Technol 13(4):1441–1448. https://doi.org/10.1007/s41870-021-00653-7

    Article  Google Scholar 

  33. Bojamma AM, Shastry C (2021) A study on the machine learning techniques for automated plant species identification: current trends and challenges. Int J Inf Technol 13(3):989–995. https://doi.org/10.1007/s41870-019-00379-7

    Article  Google Scholar 

  34. Divate MS (2021) Sentiment analysis of Marathi news using LSTM. Int J Inf Technol 13(5):2069–2074. https://doi.org/10.1007/s41870-021-00702-1

    Article  Google Scholar 

  35. Pattekari A, Parveen SA (2012) Prediction system for heart disease using Naïve Bayes. Int J Adv Comput Math Sci 3(3):290–294

    Google Scholar 

  36. Dulhare UN (2018) Prediction system for heart disease using Naive Bayes and particle swarm optimization. Biomed Res 29(12):2646–2649. https://doi.org/10.4066/biomedicalresearch.29-18-620

    Article  Google Scholar 

  37. Kulkarni TR, Dushyanth ND (2021) Performance evaluation of deep learning models in detection of different types of arrhythmia using photo plethysmography signals. Int J Inf Technol 13(6):2209–2214. https://doi.org/10.1007/s41870-021-00795-8

    Article  Google Scholar 

  38. Pandey NN, Muppalaneni NB (2021) A novel algorithmic approach of open eye analysis for drowsiness detection. Int J Inf Technol 13(6):2199–2208. https://doi.org/10.1007/s41870-021-00811-x

    Article  Google Scholar 

  39. Patil AR, Subbaraman S (2021) Performance analysis of static hand gesture recognition approaches using artificial neural network, support vector machine and two stream based transfer learning approach. Int J Inf Technol. https://doi.org/10.1007/s41870-021-00831-7

    Article  Google Scholar 

  40. Chandra MA, Bedi SS (2021) Survey on SVM and their application in image classification. Int J Inf Technol 13(5):1867–1877. https://doi.org/10.1007/s41870-017-0080-1

    Article  Google Scholar 

  41. Sharma LD, Sunkaria RK (2019) Detection and delineation of the enigmatic U-wave in an electrocardiogram. Int J Inf Technol 13(6):2525–2532. https://doi.org/10.1007/s41870-019-00287-w

    Article  Google Scholar 

  42. Usha Kirana SP, D’Mello DA (2021) Energy-efficient enhanced Particle Swarm Optimization for virtual machine consolidation in cloud environment. Int J Inf Technol 13(6):2153–2161. https://doi.org/10.1007/s41870-021-00745-4

    Article  Google Scholar 

  43. Mane DT, Tapdiya R, Shinde SV (2021) Handwritten Marathi numeral recognition using stacked ensemble neural network. Int J Inf Technol 13(5):1993–1999. https://doi.org/10.1007/s41870-021-00723-w

    Article  Google Scholar 

  44. Kumar R, Srivastava S, Dass A, Srivastava S (2019) A novel approach to predict stock market price using radial basis function network. Int J Inf Technol 13(6):2277–2285. https://doi.org/10.1007/s41870-019-00382-y

    Article  Google Scholar 

  45. Sharma LD, Chhabra H, Chauhan U, Saraswat RK, Sunkaria RK (2021) Mental arithmetic task load recognition using EEG signal and Bayesian optimized K-nearest neighbor. Int J Inf Technol 13(6):2363–2369. https://doi.org/10.1007/s41870-021-00807-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agam Das Goswami.

Ethics declarations

Conflict of interest

It has been declared by the authors that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhavekar, G.S., Goswami, A.D. A hybrid model for heart disease prediction using recurrent neural network and long short term memory. Int. j. inf. tecnol. 14, 1781–1789 (2022). https://doi.org/10.1007/s41870-022-00896-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41870-022-00896-y

Keywords