Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Higher helicity invariants and solar dynamo

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Modern models of nonlinear dynamo saturation in celestial bodies (specifically, on the Sun) are largely based on the consideration of the balance of magnetic helicity. This physical variable has also a topological meaning: it is associated with the linking coefficient of magnetic tubes. In addition to magnetic helicity, magnetohydrodynamics has a number of topological integrals of motion (the so-called higher helicity moments). We have compared these invariants with magnetic helicity properties and concluded that they can hardly serve as nonlinear constraints on dynamo action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhmet’ev, P.M., Quadratic helicities and the energy of magnetic fields, Proc. Steklov Inst. Math., 2012, vol. 278, no. 1, pp. 10–21.

    Article  Google Scholar 

  • Arnol’d, V.I., Izbrannoe-60 (Selected Works), Moscow: Fazis, 1997.

    Google Scholar 

  • Arnol’d, V.I. and Khesin, B.A., Topologicheskie metody v gidrodinamike (Topological Methods in Hydrodynamics), Moscow: MTsNMO, 2007.

    Google Scholar 

  • Arnol’d, V.I., Zel’dovich, Ya.B., Ruzmaikin, A.A., and Sokolov, D.D., Stationary magnetic field in a periodic flow, Dokl. Akad. Nauk SSSR, 1983, vol. 266, no. 6, pp. 1357–1361.

    Google Scholar 

  • Brandenburg, A., Why coronal mass ejections are necessary for the dynamo, Highlights Astron., 2007, vol. 14, pp. 291–292.

    Google Scholar 

  • Brandenburg, A. and Subramanian, K., Astrophysical magnetic fields and nonlinear dynamo theory, Phys. Rep., 2005, vol. 417, pp. 1–209.

    Article  Google Scholar 

  • Cattaneo, F., Brummell, N.H., and Cline, K.S., What is a flux tube? On the magnetic field topology of buoyant flux structures, Mon. Not. R. Astron. Soc., 2006, vol. 365, no. 3, pp. 727–734.

    Article  Google Scholar 

  • Enciso, A., Peralta-Salas, D., and Torres de Lizaur, F., Proc. Nat. Acad. Sci., 2016, vol. 113, no. 8, pp. 2035–2040.

  • Georgoulis, M.K., A new technique for a routine azimuth disambiguation of solar vector magnetograms, Astrophys. J., 2005, vol. 629, no. 1, pp. L69–L72.

    Article  Google Scholar 

  • Gruzinov, A.V. and Diamond, P.H., Self-consistent theory of mean-field electrodynamics, Phys. Rev. Lett., 1994, vol. 72, no. 11, pp. 1651–1653.

    Article  Google Scholar 

  • Kleeorin, N., Moss, D., Rogachevskii, I., and Sokoloff, D., Helicity balance and steady-state strength of the dynamo generated galactic magnetic field, Astron. Astrophys., 2000, vol. 361, pp. L5–L8.

    Google Scholar 

  • Kleeorin, N., Moss, D., Rogachevskii, I., and Sokoloff, D., The role of magnetic helicity transport in nonlinear galactic dynamos, Astron. Astrophys., 2002, vol. 387, pp. 453–462.

    Article  Google Scholar 

  • Mel’nikov, V.K., Qualitative description of strong resonance in a nonlinear system, Dokl. Akad. Nauk SSSR, 1963, vol. 148, no. 6, pp. 1257–1260.

    Google Scholar 

  • Moffatt, H., Magnetic Field Generation in Electrically Conducting Fluids, Cambridge: Cambridge Univ. Press, 1978; Moscow: Mir, 1980.

    Google Scholar 

  • Ruzmaikin, A. and Akhmetiev, P., Topological invariants of magnetic fields, and the effect of reconnections, Phys. Plasmas, 1994, vol. 1, no. 2, pp. 331–336.

    Article  Google Scholar 

  • Seifert, H. and Threlfall, W., A Textbook of Topology, London: Academic, 1980; Moscow–Izhevsk: RKhD, 2001.

    Google Scholar 

  • Shukurov, A., Sokoloff, D., Subramanian, K., and Brandenburg, A., Galactic dynamo and helicity losses through fountain flow, Astron. Astrophys., 2006, vol. 448, pp. L33–L36.

    Article  Google Scholar 

  • Tamm, I.E., Osnovy teorii elektrichestva (Foundation of Electricity Theory), Moscow–Leningrad: OGIZ, 1946.

    Google Scholar 

  • Vainshtein, S.I. and Cattaneo, F., Nonlinear restrictions on dynamo action, Astrophys. J., 1992, vol. 393, no. 1, pp. 165–171.

    Article  Google Scholar 

  • Wang, Y.-M. and Sheeley, N.R., Sunspot activity and the long-term variation of the Sun’s open magnetic flux, J. Geophys. Res.: Space, 2002, vol. 107, no. A10, pp. SSH10-1–SSH10-15.

    Article  Google Scholar 

  • Xu, H., Stepanov, R., Kuzanyan, K., Sokoloff, D., Zhang, H., and Gao, Y., Current helicity and magnetic field anisotropy in solar active regions, Mon. Not. R. Astron. Soc., 2015, vol. 454, no. 2, pp. 1921–1930.

    Article  Google Scholar 

  • Zhang, H., Sakurai, T., Pevtsov, A., Gao, Y., Xu, H., Sokoloff, D.D., and Kuzanyan, K., A new dynamo pattern revealed by solar helical magnetic fields, Mon. Not. R. Astron. Soc., 2012, vol. 402, no. 1, pp. L30–L33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Sokolov.

Additional information

Original Russian Text © D.D. Sokolov, E.A. Illarionov, P.M. Akhmet’ev, 2017, published in Geomagnetizm i Aeronomiya, 2017, Vol. 57, No. 1, pp. 123–128.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, D.D., Illarionov, E.A. & Akhmet’ev, P.M. Higher helicity invariants and solar dynamo. Geomagn. Aeron. 57, 113–118 (2017). https://doi.org/10.1134/S0016793217010133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793217010133