Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quasi-Brittle Fracture of Compact Specimens with Sharp Notches and U-Shaped Cuts

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A two-parameter (coupled) discrete-integral criterion of fracture is proposed. It can be used to construct fracture diagrams for compact specimens with sharp cracks. Curves separating the stress–crack length plane into three domains are plotted. These domains correspond to the absence of fracture, damage accumulation in the pre-fracture region under repeated loading, and specimen fragmentation under monotonic loading. Constants used for the analytical description of fracture diagrams for quasi-brittle materials with cracks are selected with the use of approximation of the classical stress–strain diagrams for the initial material and the critical stress intensity factor. Predictions of the proposed theory are compared with experimental results on fracture of compact specimens with different radii made of polymethylmethacrylate (PMMA) and solid rubber with crack-type effects in the form of U-shaped cuts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Panasyuk, A. E. Andreikin, and V. Z. Parton, Fracture Mechanics and Material Strength: Reference Book, Vol. 1: Fundamentals of Material Fracture Mechanics (Naukova Dumka, Kiev, 1988) [in Russian].

    Google Scholar 

  2. X.-K. Zhu and J. A. Joyce, “Review of Fracture Toughness (G, K, J, CTOD, CTOA) Testing and Standardization,” Eng. Fracture Mech. 85, 1–46 (2012).

    Article  Google Scholar 

  3. F. Berto and P. Lazzarin, “Recent Developments in Brittle and Quasi-Brittle Failure Assessment of Engineering Materials by Means of Local Approaches,” Mater. Sci. Eng. R 75, 1–48 (2014).

    Article  Google Scholar 

  4. M. Ya. Leonov and V. V. Panasyuk, “Development of the Smallest Cracks in Solids,” Prikl. Mekh. 5 (4), 391–401 (1959).

    Google Scholar 

  5. D. S. Dugdale, “Yielding of Steel Sheets Containing Slits,” J. Mech. Phys. Solids 8, 100–104 (1960).

    Article  ADS  Google Scholar 

  6. G. Neuber, Kerbspannunglehre: Grunglagen fur Genaue Spannungsrechnung (Springer-Verlag, Berlin, 1937).

    Book  Google Scholar 

  7. V. V. Novozhilov, “On the Necessary and Sufficient Criterion of Brittle Strength,” Prikl. Mat. Mekh. 33 (2), 212–222 (1969).

    Google Scholar 

  8. V. D. Kurguzov and V. M. Kornev, “Construction of Quasi-Brittle and Quasi-Ductile Fracture Diagrams Based on Necessary and Sufficient Criteria,” Prikl. Mekh. Tekh. Fiz. 54 (1), 179–195 (2013) [J. Appl. Mech. Tech. Phys. 54 (1), 156–170 (2013)].

    MATH  Google Scholar 

  9. I. M. Kershtein, V. D. Klyushnikov, E. V. Lomakin, and S. A. Shesterikov, Fundamentals of Experimental Fracture Mechanics (Izd. Mosk. Gos. Univ., Moscow, 1989) [in Russian].

    Google Scholar 

  10. V. M. Kornev, “Assessment Diagram of Quasi-Brittle Fracture of Bodies with a Hierarchy of Structures. Multiscale Necessary and Sufficient Criteria of Fracture,” Fiz. Mezomekh. 13 (1), 47–59 (2010).

    Google Scholar 

  11. V. M. Kornev and A. G. Demeshkin, “Quasi-Brittle Fracture Diagram of Structured Bodies in the Presence of Edge Cracks,” Prikl. Mekh. Tekh. Fiz. 52 (6), 152–164 (2011) [J. Appl. Mech. Tech. Phys. 52 (6), 975–985 (2011)].

    MATH  Google Scholar 

  12. M. P. Savruk, Fracture Mechanics and Material Strength: Reference Book, Vol. 2: Stress Intensity Factors in Cracked Bodies (Naukova Dumka, Kiev, 1988) [in Russian].

    Google Scholar 

  13. Stress Intensity Factors Handbook, Ed. by Y. Murakami (Pergamon Press, Oxford, 1986).

  14. V. M. Kornev, “Diagrams of Quasi-Brittle Fracture of Bent Structural Elements with Cracks,” Probl. Mashinostr. Nadezh. Mashin, No. 2, 38–46 (2015).

    Google Scholar 

  15. S. E. Kovchik and E. M. Morozov, Fracture Mechanics and Material Strength: Reference Book, Vol. 3: Characteristics of Short-Time Fracture Toughness of Materials and Methods of their Determination (Naukova Dumka, Kiev, 1988) [in Russian].

    Google Scholar 

  16. V. M. Kornev, “Critical Fracture Curves and Effective Diameter of the Structure of Brittle and Quasi-Brittle Materials,” Fiz. Mezomekh. 16 (5), 25–34 (2013).

    Google Scholar 

  17. V. M. Kornev, “Fracture Diagrams for Bodies with Short Microcracks. Embrittlement of the Material during Fatigue Fracture,” Fiz. Mezomekh. 19 (2), 80–99 (2016).

    Google Scholar 

  18. M. Eleces, G. V. Guinea, J. Gomez, and J. Planas, “The Cohesive Zone Model: Advantages, Limitations and Challenges,” Eng. Fracture Mech. 69, 137–163 (2002).

    Article  Google Scholar 

  19. G. I. Barenblatt, “Mathematical Theory of Equilibrium Cracks Formed during Brittle Fracture,” Prikl. Mekh. Tekh. Fiz., No. 4, 3–56 (1961).

    Google Scholar 

  20. V. Z. Parton and E. M. Morozov, Elastoplastic Fracture Mechanics: Fundamentals of Fracture Mechanics (Izd. LKI, 2008) [in Russian].

    Google Scholar 

  21. V. M. Kornev and N. S. Astapov, “Model of Fracture of a Piecewise–HomogeneousMedium during Delamination of Elastoplastic Structured Materials,” Mekh. Kompoz. Mater. Konstr. 16 (3), 347–360 (2010).

    Google Scholar 

  22. V. M. Kornev, V. D. Kurguzov, and N. S. Astapov, “Fracture Model of Bimaterial under Delamination of Elasto-Plastic Structured Media,” Appl. Compos. Mater. 20 (2), 129–143 (2013).

    Article  ADS  Google Scholar 

  23. A. G. Demeshkin, V. M. Kornev, and N. S. Astapov, “Strength of a Glued Composite with Crack-Type Defects,” Mekh. Kompoz. Mater. Konstr. 19 (3), 445–458 (2013).

    Google Scholar 

  24. V. M. Kornev, “Delamination of Bimaterial and Critical Curves of Quasi-Brittle Fracture in the Presence of Edge Cracks,” Adv. Materials Sci. Appl. 3 (4), 164–176 (2014).

    Google Scholar 

  25. N. S. Astapov, V. D. Kurguzov, and V.M. Kornev, “Modeling of Bimaterial Delamination Induced by Transverse Shear,” Mekh. Kompoz. Mater. Konstr. 22 (1), 40–53 (2016).

    Google Scholar 

  26. N. S. Astapov, V. M. Kornev, and V. D. Kurguzov, “Model of Delamination of a Cracked Bimaterial with Different Moduli,” Fiz. Mezomekh. 19 (4), 49–57 (2016).

    Google Scholar 

  27. M. M. Shakirtov, A. P. Shabanov, and V. M. Kornev, “Construction of Fracture Diagrams for Plates with a Crack-Like Cut with the Use of Necessary and Sufficient Criteria,” Prikl. Mekh. Tekh. Fiz. 54 (2), 163–170 (2013) [J. Appl. Mech. Tech. Phys. 54 (2), 308–314 (2013)].

    MATH  Google Scholar 

  28. V. M. Kornev, “Quasi-Brittle Fracture Diagrams due to Fatigue (Two-Frequency Loading),” Fiz. Mezomekh. 15 (6), 45–58 (2012).

    Google Scholar 

  29. V. M. Kornev, “Quasi-Brittle Fracture Diagrams under Low-Cycle Fatigue (Variable Amplitude Loadings),” Eng. Failure Anal. 35, 533–544 (2013).

    Article  Google Scholar 

  30. A. Yu. Larichkin, V. M. Kornev, and A. G. Demeshkin, “Changes in Plasticity Regions and Damage Accumulation in the Course of Crack Propagation in Quasi-Brittle Materials under Low-Cycle Loading,” Fiz. Mezomekh. 19 (4), 38–48 (2016).

    Google Scholar 

  31. V. M. Kornev, “Diagrams of Quasi-Brittle Fracture ofWelded Joints under Low-Cyclic Fatigue Loading,” Mekh. Kompoz. Mater. Konstr. 19 (4), 568–581 (2013).

    Google Scholar 

  32. V. M. Kornev, “Damage Accumulation and Fracture of Welded Joints under Low-Cyclic Loading Conditions,” Appl. Mech. Mater. 784, 179–189 (2015).

    Article  Google Scholar 

  33. O. N. Romaniv, S. Ya. Yarema, G. N. Nikiforchin, N. A. Makhutov, and M. M. Stadnik, Fracture Mechanics and Material Strength: Reference Book, Vol. 4: Fatigue and Cyclic Fracture Toughness of Structural Materials (Naukova Dumka, Kiev, 1990) [in Russian].

    Google Scholar 

  34. V. V. Bolotin, Mechanics of Fatigue (CRC Press, Boka Raton, London, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kornev.

Additional information

Original Russian Text © V.M. Kornev, A.G. Demeshkin.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 59, No. 1, pp. 138–152, January–February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornev, V.M., Demeshkin, A.G. Quasi-Brittle Fracture of Compact Specimens with Sharp Notches and U-Shaped Cuts. J Appl Mech Tech Phy 59, 120–131 (2018). https://doi.org/10.1134/S0021894418010157

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894418010157

Keywords