Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Photocatalytic Inactivation of Bacteria in the Presence of Tungsten-Modified Titania under Visible Light Irradiation

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Photocatalytically active materials based on titania modified with tungsten (5–30 wt %) have been synthesized. Specific features of the formation of these materials and their physicochemical and photocatalytic properties have been described. It has been found that the modification of titania with tungsten provides the formation of nanodispersed powders (7.2–96.7 nm) with a free specific surface area of 6.4–215 m2/g. Using the example of gram-negative bacteria Pseudomonas fluorescens, it has been shown that photocatalysts based on titania modified with tungsten (10–30 wt %) and calcined at 600°C are highly efficient for the photocatalytic inactivation of the microbiota. The highest photocatalytic antibacterial activity has been exhibited by the 600-W-20 sample. Most of the bacteria are inactivated under irradiation with visible light of natural origin at an illuminance (E) of 14 500 lx during the first 20–45 min. Upon the introduction of unmodified titania, the 600-W-5 sample, and a commercial P-25 photocatalyst from Degussa as a photocatalyst, no inhibition of bacterial growth has been detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Legrini, O., Oliveros, E., and Braun, A.M., Chem. Rev., 1993, vol. 93, p. 671. https://doi.org/10.1021/cr00018a003

    Article  CAS  Google Scholar 

  2. Mills, A. and Hunte, L.S., J. Photochem. Photobiol., A, 1997, vol. 108, p. 1. https://doi.org/10.1016/S1010-6030(97)00118-4

    Article  CAS  Google Scholar 

  3. Jacoby, W.A., Maness, P.C., Wolfrum, E.J., Blake, D.M., and Fennell, J.A., Environ. Sci. Technol., 1998, vol. 32, p. 2650. https://doi.org/10.1021/es980036f

    Article  CAS  Google Scholar 

  4. Lin, C.Y. and Li, C.S., Aerosol Sci. Technol., 2003, vol. 37, p. 939. https://doi.org/10.1080/02786820300900

    Article  CAS  Google Scholar 

  5. Burton, P., Peterson, E., Boyle, T., and Datye, A., Catal. Lett., 2010, vol. 139, nos. 1–2, p. 26. https://doi.org/10.1007/s10562-010-0405-1

    Article  CAS  Google Scholar 

  6. Vaiano, V. and Iervolino, G., Appl. Sci. 2019, vol. 9, no. 13, p. 2741. https://doi.org/10.3390/app9132741

    Article  CAS  Google Scholar 

  7. Uma, R. and Ravichandran, K., Kinet. Catal., 2017, vol. 58, no. 6, p. 701. https://doi.org/10.1134/S0023158418010135

    Article  CAS  Google Scholar 

  8. Bignozzi, C.A., Caramori, S., Cristino, V., Argazzi, R., Meda, L., and Tacca, A., Chem. Soc. Rev., 2013, vol. 42, no. 6, p. 2228. https://doi.org/10.1039/c2cs35373c

    Article  CAS  PubMed  Google Scholar 

  9. Tian, L., Ye, L., Liu, J., and Zan, L., Catal. Commun., 2012, vol. 17, p. 99. https://doi.org/10.1016/j.catcom.2011.10.023

    Article  CAS  Google Scholar 

  10. Franking, R., Li, L., Lukowski, M.A., Meng, F., Tan, Y., Hamers, R., and Jin, S., Energy Environ. Sci., 2013, vol. 6, no. 2, p. 500. https://doi.org/10.1039/C2EE23837C

    Article  CAS  Google Scholar 

  11. Bang, J.U., Lee SJ, Jang JS, Choi W., and Song H., J. Phys. Chem. Lett., 2012, vol. 3, no. 24, p. 3781. https://doi.org/10.1021/jz301732n

    Article  CAS  PubMed  Google Scholar 

  12. Wang, J., Yin, S., Zhang, Q., Saito, F., and Sato, T., Chem. Lett., 2003, vol. 32, no. 6, p. 540. https://doi.org/10.1246/cl.2003.540

    Article  CAS  Google Scholar 

  13. Fujishima, A. and Honda, K., Nature, 1972, vol. 238, p. 37. https://doi.org/10.1038/238037a0

    Article  CAS  PubMed  Google Scholar 

  14. Renz, C., Helvetica Chim. Acta., 1921, vol. 4, p. 961. https://doi.org/10.1002/hlca.192100401101

    Article  CAS  Google Scholar 

  15. Keidel, E., Farben-Zeitung, 1929, vol. 34, p. 1242.

    CAS  Google Scholar 

  16. Bhatkhande, D.S., Pangarkar, V.G., and Beenackers, A.C.M., J. Chem. Technol. Biotechnol., 2002, vol. 77, no. 1, p. 102. https://doi.org/10.1002/jctb.532

    Article  CAS  Google Scholar 

  17. Yu, J.C., Ho, W., Yu, J., Yip, H., Wong, P.K., and Zhao, J., Environ. Sci. Technol., 2005, vol. 39, no. 4, p. 1175. https://doi.org/10.1021/es035374h

    Article  CAS  PubMed  Google Scholar 

  18. Wang, W., Huang, G., Yu, J.C., and Wong, P.K., J. Environ. Sci., 2015, vol. 34, p. 232. https://doi.org/10.1016/j.jes.2015.05.003

    Article  CAS  Google Scholar 

  19. Karvinen, S.M., Ind. Eng. Chem. Res., 2003, vol. 42, no. 5, p. 1035. https://doi.org/10.1021/ie020358z

    Article  CAS  Google Scholar 

  20. Nowotny, M.K., Sheppard, L.R., Bak, T., and Nowotny, J., J. Phys. Chem. C, 2008, vol. 112, p. 5275. https://doi.org/10.1021/jp077275m

    Article  CAS  Google Scholar 

  21. Teh, C.M. and Mohamed, A.R., J. Alloys Compd., 2011, vol. 509, p. 1648. https://doi.org/10.1016/j.jallcom.2010.10.181

    Article  CAS  Google Scholar 

  22. Yalcin, Y., Kilic, M., and Cina, Z., Appl. Catal., B, 2010, vol. 99, p. 469. https://doi.org/10.1016/j.apcatb.2010.05.013

    Article  CAS  Google Scholar 

  23. Carp, O., Huisman, C.L., and Reller, A., Prog. Solid State Chem., 2004, vol. 32, p. 33. https://doi.org/10.1016/j.progsolidstchem.2004.08.001

    Article  CAS  Google Scholar 

  24. Bally, A.R., Korobeinikova, E.N., Schmid, P.E., L vy, F., and Bussy, F., J. Phys. D: Appl. Phys., 1998, vol. 31, p. 1149. https://doi.org/10.1088/0022-3727/31/10/004

    Article  CAS  Google Scholar 

  25. Furubayashi, Y., Hitosugi, T., Yamamoto, Y., Inaba, K., Kinoda, G., Hirose, Y., Shimada, T., and Hasegawa, T., Appl. Phys. Lett., 2005, vol. 86, no. 22, p. 252101. https://doi.org/10.1063/1.1949728

    Article  CAS  Google Scholar 

  26. Fan, C., Xue, P., and Sun, Y., J. Rare Earths, 2006, vol. 24, p. 309. https://doi.org/10.1016/S1002-0721(06)60115-4

    Article  Google Scholar 

  27. El-Bahy, Z.M., Ismail, A.A., and Mohamed, R.M., J. Hazard. Mater. 2009, vol. 166, p. 138. https://doi.org/10.1016/j.jhazmat.2008.11.022

    Article  CAS  PubMed  Google Scholar 

  28. Stengl, V., Bakardjieva, S., and Murafa, N., Mater. Chem. Phys., 2009, vol. 114, p. 217. https://doi.org/10.1016/j.matchemphys.2008.09.025

    Article  CAS  Google Scholar 

  29. Shi, J.W., Zheng, J.T., and Wu, P., J. Hazard. Mater., 2009, vol. 161, p. 416. https://doi.org/10.1016/j.jhazmat.2008.03.114

    Article  CAS  PubMed  Google Scholar 

  30. Kurenkova, A.Yu., Kozlova, E.A., and Kaichev, V.V., Kinet. Catal., 2021, vol. 62, no. 6, p. 62. https://doi.org/10.31857/S0453881120060052

    Article  CAS  Google Scholar 

  31. Lakhera, S.K. and Neppolian, B., Int. J. Hydrogen Energy, 2020, vol. 45, no. 13, p. 7627. https://doi.org/10.1016/j.ijhydene.2019.10.142

    Article  CAS  Google Scholar 

  32. Markovskaya, D.V., Lyulyukin, M.N., Zhurenok, A.V., and Kozlova, E.A., Kinet. Catal., 2021, vol. 62, no. 4, p. 488. https://doi.org/10.1134/S002315842104008X

    Article  CAS  Google Scholar 

  33. Sirimahachai, U., Phongpaichit, S., and Wongnawa S., Songklanakarin, J. Sci. Technol., 2009, vol. 31, no. 5, p. 517.

    Google Scholar 

  34. Jacoby, W.A., Maness, P.C., Wolfrum, E.J., Blake, D.M., and Fennell, J.A., Environ. Sci. Technol., 1998, vol. 32, no. 17, p. 2650. https://doi.org/10.1021/es980036f

    Article  CAS  Google Scholar 

  35. Caballero, L., Whitehead, K.A., Allen, N.S., and Verran, J., J. Photochem. Photobiol., A, 2009, vol. 202, p. 92. https://doi.org/10.1016/j.jphotochem.2008.11.005

    Article  CAS  Google Scholar 

  36. Liu, H.-L. and Yang, T.C.-K., Proc. Biochem., 2003, vol. 39, p. 475. https://doi.org/10.1016/S0032-9592(03)00084-0

    Article  CAS  Google Scholar 

  37. Popov, A.L., Zholobak, N.M., Balko, O.I., Balko, O.B., Shcherbakov, A.B., Popova, N.R., Ivanova, O.S., Baranchikov, A.E., and Ivanov, V.K., J. Photochem. Photobiol., B, 2018, vol. 178, p. 395. https://doi.org/10.1016/j.jphotobiol.2017.11.021

    Article  CAS  Google Scholar 

  38. Sayama, K., Hayashi, H., Konishi, Y., Gunji, T., and Sugihara, H., Chem. Lett., 2010, vol. 39, no. 8, p. 884. https://doi.org/10.1246/cl.2010.884

    Article  CAS  Google Scholar 

  39. Ghasempour, F., Azimirad, R., Amini, A., and Akhavan, O., Appl. Surf. Sci., 2015, vol. 338, p. 55. https://doi.org/10.1016/j.apsusc.2015.01.217

    Article  CAS  Google Scholar 

  40. Scott-Emuakpor, E., Paton, G.I., Todd, M.J., and Macphee, D.E., Environ. Eng. Manag. J., 2016, vol. 15, no. 5. P. 899. https://doi.org/10.30638/eemj.2016.097

    Article  CAS  Google Scholar 

  41. Lin, C.F., Wu, C.H., and Onn, Z.N., J. Hazard. Mater., 2008, vol. 154, nos. 1–3, p. 1033. https://doi.org/10.1016/j.jhazmat.2007.11.010

    Article  CAS  PubMed  Google Scholar 

  42. Chai, S.Y., Kim, Y.J., and Lee, W.I., J. Electroceram., 2006, vol. 17, no. 2, p. 909. https://doi.org/10.1007/s10832-006-9073-3

    Article  CAS  Google Scholar 

  43. Song, K.Y., Park, M.K., Kwon, Y.T., Lee, H.W., Chung, W.J., and Lee, W.I., Chem. Mater., 2001, vol. 13, no. 7, p. 2349. https://doi.org/10.1021/cm000858n

    Article  CAS  Google Scholar 

  44. Riboni, F., Bettini, L.G., Bahnemann, D.W., and Selli, E., Catal. Today, 2013, vol. 209, p. 28. https://doi.org/10.1016/j.cattod.2013.01.008

    Article  CAS  Google Scholar 

  45. RF Patent 2435733, 2011.

  46. Sedneva, T.A., Lokshin, E.P., Kalinnikov, V.T., and Belikov, M.L., Dokl. Phys. Chem., 2012, vol. 443. Part 1, p. 57. https://doi.org/10.1134/S0012501612030037

    Article  CAS  Google Scholar 

  47. Sedneva, T.A., Lokshin, E.P., and Belikov, M.L., Inorg. Mater., 2012, vol. 48, no. 5, p. 480. https://doi.org/10.1134/S0020168512050160

    Article  CAS  Google Scholar 

  48. Belikov, M.L., Sedneva, T.A., and Lokshin, E.P., Inorg. Mater., 2020, vol. 56, no. 7, p. 723. https://doi.org/10.1134/S0020168520060023

    Article  CAS  Google Scholar 

  49. Belikov, M.L., Sedneva, T.A., and Lokshin, E.P., Inorg. Mater., 2021, vol. 57, no. 2, p. 154. https://doi.org/10.1134/S0020168521020023

    Article  Google Scholar 

  50. Diagrammy sostoyaniya sistem tugoplavkikh oksidov (Phase Diagrams of Systems of Refractory Oxides) Galakhov, F.Ya., Ed., Leningrad: Nauka, 1988.

    Google Scholar 

  51. Aristovskaya, V.V., Vladimirskaya, M.E., and Gollerbakh, M.M., Bol’shoi praktikum po mikrobiologii: Uchebnoe posobie (Large Workshop on Microbiology: Study Guide), Moscow: Vysshaya shkola, 1962.

  52. Matthews, R.W. and McEvoy, S.R., Solar Energy, 1992, vol. 49, p. 507. https://doi.org/10.1016/0038-092X(92)90159-8

    Article  CAS  Google Scholar 

  53. Meng, D., Liu, X., Xie, Y., Du, Y., Yang, Y., and Xiao, C., Adv. Mater. Sci. Eng., 2019, vol. 2019, no. 1, p. 1. https://doi.org/10.1155/2019/5819805

    Article  CAS  Google Scholar 

  54. Mikhosoev, M.V. and Bazarova, Zh.G., Slozhnye oksidy molibdena i vol’frama s elementami I-IV grupp (Complex Oxides of Molybdenum and Tungsten with Elements of I-IV Groups), Moscow: Nauka, 1990.

  55. Kazenas, K.E. and Tsvetkov, Yu.V., Isparenie oksidov (Evaporation of Oxides), Moscow: Nauka, 1997.

  56. Verdier, T., Coutand, M., Bertron, A., and Roques, C., Coatings, 2014, vol. 4, no. 3, p. 670. https://doi.org/10.3390/coatings4030670

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Belikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Abbreviations and notation: PC, photocatalyst; UV, ultraviolet; PCA, photocatalytic activity; AA, antibacterial activity; XRD, X-ray diffraction analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belikov, M.L., Fokina, N.V., Redkina, V.V. et al. Photocatalytic Inactivation of Bacteria in the Presence of Tungsten-Modified Titania under Visible Light Irradiation. Kinet Catal 63, 364–376 (2022). https://doi.org/10.1134/S0023158422040036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158422040036

Keywords: