Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Non-Polynomial Interpolation of Functions with Large Gradients and Its Application

  • GENERAL NUMERICAL METHODS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Interpolation of a function of one variable with large gradients in the boundary layer region is studied. The problem is that the use of classical polynomial interpolation formulas on a uniform mesh to functions with large gradients can lead to errors of the order of \(O(1)\), despite a small mesh size. An interpolation formula based on fitting to the component that defines the boundary-layer growth of the function is investigated. An error estimate, which depends on the number of interpolation nodes and is uniform over the boundary layer component and its derivatives, is obtained. It is shown how the interpolation formula derived can be used to construct formulas for numerical differentiation and integration and in the two-dimensional case. The corresponding error estimates are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. I. Zadorin, “Method of interpolation for a boundary layer problem,” Sib. Zh. Vychisl. Mat. 10 (3), 267–275 (2007).

    MATH  Google Scholar 

  2. G. I. Shishkin, Grid Approximations of Singularly Perturbed Elliptic and Parabolic Equations (Ural Otd. Ross. Akad. Nauk, Yekaterinburg, 1992) [in Russian].

    MATH  Google Scholar 

  3. N. S. Bakhvalov, “The optimization of methods of solving boundary value problems with a boundary layer,” USSR Comput. Math. Math. Phys. 9 (4), 139–166 (1969).

    Article  MathSciNet  Google Scholar 

  4. T. Linss, Layer-Adapted Meshes for Reaction–Convection–Diffusion Problems (Springer-Verlag, Berlin, 2010).

    Book  Google Scholar 

  5. A. I. Zadorin, “Lagrange interpolation and Newton–Cotes formulas for functions with a boundary layer component on piecewise uniform meshes,” Numer. Anal. Appl. 8 (3), 235–247 (2015).

    Article  MathSciNet  Google Scholar 

  6. A. I. Zadorin, “Interpolation method for a function with a singular component,” Lect. Notes Comput. Sci. 5434, 612–619 (2009).

    Article  Google Scholar 

  7. R. B. Kellogg and A. Tsan, “Analysis of some difference approximations for singular perturbation problem without turning points,” Math. Comput. 32, 1025–1039 (1978).

    Article  MathSciNet  Google Scholar 

  8. A. I. Zadorin and N. A. Zadorin, “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation,” Sib. Electron. Math. Rep. 9, 445–455 (2012).

    MathSciNet  MATH  Google Scholar 

  9. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  10. A. I. Zadorin and N. A. Zadorin, “Quadrature formulas for functions with a boundary-layer component,” Comput. Math. Math. Phys. 51 (11), 1837–1846 (2011).

    Article  MathSciNet  Google Scholar 

  11. A. I. Zadorin and N. A. Zadorin, “An analogue of the four-point Newton–Cotes formula for a function with a boundary-layer component,” Numer. Anal. Appl. 6 (4), 268–278 (2013).

    Article  Google Scholar 

  12. A. Zadorin and N. Zadorin, “Quadrature formula with five nodes for functions with a boundary layer component,” Lect. Notes Comput. Sci. 8236, 540–546 (2013).

    Article  MathSciNet  Google Scholar 

  13. A. I. Zadorin and N. A. Zadorin, “Analogue of Newton–Cotes formulas for numerical integration of functions with a boundary-layer component,” Comput. Math. Math. Phys. 56 (3), 358–366 (2016).

    Article  MathSciNet  Google Scholar 

  14. G. I. Shishkin, “Approximations of solutions and derivatives for a singularly perturbed elliptic convection–diffusion equations,” Math. Proc. R. Ir. Acad. A 103, 169–201 (2003).

    Article  MathSciNet  Google Scholar 

  15. N. Kopteva, “Error expansion for an upwind scheme applied to a two-dimensional convection–diffusion problem,” SIAM J. Numer. Anal. 41, 1851–1869 (2003).

    Article  MathSciNet  Google Scholar 

  16. J. L. Gracia and E. O’Riordan, “Numerical approximation of solution derivatives of singularly perturbed parabolic problems of convection–diffusion type,” Math. Comput. 85, 581–599 (2016).

    Article  MathSciNet  Google Scholar 

  17. A. I. Zadorin, “Analysis of numerical differentiation formulas in a boundary layer on a Shishkin grid,” Numer. Anal. Appl. 11 (3), 193–203 (2018).

    Article  MathSciNet  Google Scholar 

  18. A. Zadorin and S. Tikhovskaya, “Formulas of numerical differentiation on a uniform mesh for functions with the exponential boundary layer,” Int. J. Numer. Anal. Model. 16 (4), 590–608 (2019).

    MathSciNet  MATH  Google Scholar 

  19. V. P. Il’in and A. I. Zadorin, “Adaptive formulas of numerical differentiation of functions with large gradients,” J. Phys. Conf. Ser. 1260, 042003 (2019).

    Article  Google Scholar 

  20. H. G. Roos, M. Stynes, and L. Tobiska, “Numerical methods for singularly perturbed differential equations,” Convection–Diffusion and Flow Problems (Springer, Berlin, 2008).

    MATH  Google Scholar 

  21. A. I. Zadorin, “Interpolation of a two-variable function with high boundary-layer gradients,” Uch. Zap. Kazan. Univ. Fiz.-Mat. Nauki 157 (2), 55–67 (2015).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (Sections 1, 2, and 4, project no. 20-01-00650; Sections 3, 5, and 6, project no. 19-31-60009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Zadorin or N. A. Zadorin.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadorin, A.I., Zadorin, N.A. Non-Polynomial Interpolation of Functions with Large Gradients and Its Application. Comput. Math. and Math. Phys. 61, 167–176 (2021). https://doi.org/10.1134/S0965542521020147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542521020147

Keywords: