Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On cloud bottom boundary determination by digital stereo photography from the Earth’s surface

  • Adaptive and Integral Optics
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we studied the method for measuring the cloud bottom boundary altitude using the stereo pair of cloud images obtained using two digital photo cameras. We suggested a method for determining the camera orientation parameters using the nighttime images of star sky. The range to the cloud is calculated using the shift of the image of a cloud fragment as a whole. A given fragment on the photographs is identified using the methods of morphological image analysis. When the stereo base is 60 m and images are taken with a resolution of 1200 pixels within a field of view of 60°, the uncertainty does not exceed 10% when cloud altitude is less than 4 km. Optimizing the parameters of photography and increasing the stereo base may substantially improve the accuracy of the cloud base altitude estimation. Examples are presented of cloud bottom boundary determination using a prototype of the experimental setup as compared to data of a laser range finder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Golitsyn and I. I. Mokhov, “Estimates of the sensitivity and role of clouds in simple climate models,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 14 (8), 803–814 (1978).

    Google Scholar 

  2. V. A. Ivanov and O.V. Postylyakov, “Estimation of integral NO2 content in the atmospheric boundary layer from observations of scattered in zenith radiation,” Opt. Atmos. Okeana 23 (6), 471–475 (2010).

    Google Scholar 

  3. V. A. Ivanov, A. S. Elokhov, and O. V. Postylyakov, “On the Possibility of Estimating the Volume of NO2 Emissions in Cities Using Zenith Spectral Observations of Diffuse Solar Radiation near 450 nm,” Atmos. Ocean. Opt. 25 (6), 434–439 (2012).

    Article  Google Scholar 

  4. O. Postylyakov, A. Borovski, and V. Ivanov, “On determination of formaldehyde content in atmospheric boundary layer for overcast using DOAS technique,” Proc. SPIE 9680, 96804 (2015).

    ADS  Google Scholar 

  5. G. S. Golitsyn and I. I. Mokhov, “Study of the clouds and radiation within the Soviet Climatological Program,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 25 (8), 891–895 (1989).

    Google Scholar 

  6. S. V. Dvoryashin, “Remote measurements of the ratio of volume absorption coefficients of water and ice in clouds within the spectral range 2.15–2.35 μm,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 38 (4), 523–528 (2002).

    Google Scholar 

  7. S. V. Zuev and N. P. Krasnenko, “Passive method for cloud base height detection,” Proc. SPIE 6522, 65221S.1–65221S.6 (2006). doi 10.1117/12.723217

    Google Scholar 

  8. M. Andreev, A. I. Chulichkov, A. P. Medvedev, and O. V. Postylyakov, “Estimation of cloud base height using ground-based stereo photography: Method and first results,” Proc. SPIE 9242, 924219.1–924219.7 (2014). doi 10.1117/12.2069824

    Google Scholar 

  9. M. S. Andreev, A. I. Chulichkov, A. S. Emilenko, A. P. Medvedev, and O. V. Postylyakov, “Estimation of cloud height using ground-based stereophotography: Methods, error analysis and validation,” Proc. SPIE 9259, 92590N.1–92590N.7 (2014). doi 10.1117/12.2069800

    Google Scholar 

  10. S. V. Zuev and N. P. Krasnenko, “Experimental research of ceilometer,” Opt. Atmos. Okeana 22 (1), 86–89 (2009).

    Google Scholar 

  11. Yu. P. Pyt’ev, Mathematical Simulation Techniques for Computer Measuring Systems (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  12. Yu. P. Pyt’ev and A. I. Chulichkov, Methods for Morphological Analysis of Images (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  13. J. Mrovlje and D. Vrancic, “Distance measuring based on stereoscopic pictures,” in Proc. 9th International PhD Workshop on Systems and Control: Young Generation Viewpoint, Izola, Slovenia, 2008, Vol. 2, pp. 1–6.

    Google Scholar 

  14. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (University Press, Cambridge, Cambridge, 2004).

    Book  MATH  Google Scholar 

  15. H. Walcher, Position Sensing—Angle and Distance Measurement for Engineers (Butterworth-Heinemann, 1994), 2nd ed.

    Google Scholar 

  16. A. I. Chulichkov, D. S. Demin, and S. N. Kulichkov, “Estimates of the relative time of signal delay from the analysis of signal shapes,” Vestn. MGU, Ser. 3, Fiz., Astronomiya, No. 6, 17–21 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Chulichkov.

Additional information

Original Russian Text © A.I. Chulichkov, M.S. Andreev, G.S. Golitsyn, N.F. Elansky, A.P. Medvedev, O.V. Postylyakov, 2016, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chulichkov, A.I., Andreev, M.S., Golitsyn, G.S. et al. On cloud bottom boundary determination by digital stereo photography from the Earth’s surface. Atmos Ocean Opt 30, 184–190 (2017). https://doi.org/10.1134/S1024856017020075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856017020075

Keywords