Abstract
Gd/MgO/Fe superlattice-based nanostructures are an artificial ferromagnetic material, in which the exchange coupling of the magnetic moments of Fe layers through dielectric and rare-earth interlayers can create magnetic configurations atypical of the well-studied Fe/Cr and Fe/MgO/Fe systems. In this work, the structural features and magnetic properties of a series of Nb(20 nm)/[Gd(5 nm)/MgO(t nm)/Fe(5 nm)]х6/Nb(5 nm) superlattices with MgO dielectric layers of different thicknesses (t = 0, 0.4, 0.8, and 1.2 nm) are examined. Using high-resolution X-ray reflectometry, the formation of a layered structure of superlattices with layer thicknesses close to nominal and a root-mean-square interface roughness of 10% of the total layer thickness is established. Using vibrating-sample magnetometry, a difference between the hysteresis loops of the magnetization of a sample without a MgO layer and samples with MgO layers of different thicknesses is revealed. It is found that the sample without dielectric layers has a significantly lower saturation magnetization.
Similar content being viewed by others
REFERENCES
F. Hellman, A. Hoffmann, Ya. Tserkovnyak, et al., Rev. Modern Phys. 89, 025006 (2017). http://www.doi.org/10.1103/RevModPhys.89.025006
G.-H. Yu, W.-L. Peng, and J.-Ya. Zhang, Rare Met. 36, 155 (2017). http://www.doi.org/10.1007/s12598-017-0880-2
E. M. Yakunina, E. A. Kravtsov, Yu. N. Khaydukov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 15, 793 (2021). https://doi.org/10.1134/S1027451021040406
E. M. Yakunina, E. A. Kravtsov, Yu. N. Khaydukov, et al., Phys. Solid State 63, 1584 (2021). https://doi.org/10.1134/S1063783421090456
G. Yanga, J.-Y. Zhang, S.-L. Jiang, et al., Appl. Surf. Sci. 396, 705 (2017). http://www.doi.org/10.1016/j.apsusc.2016.11.012
A. Kozioł-Rachwał, W. Janus, M. Szpytma, et al., Appl. Phys. Lett. 115, 141603 (2019). https://doi.org/10.1063/1.5112093
I. Ennen, D. Kappe, T. Rempel, et al., Sensors 16, 904 (2016). http://www.doi.org/10.3390/s16060904
M. N. Baibich, J. M. Broto, A. Fert, et al., Phys. Rev. Lett. 61, 2472 (1988). https://doi.org/10.1103/PhysRevLett.61.2472
G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989). https://doi.org/10.1103/PhysRevB.39.4828
E. M. Yakunina, V. I. Bodnarchuk, V. V. Proglyado, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 987 (2014). https://doi.org/10.1134/S1027451014050437
S. S. P. Parkin, C. Kaiser, A. Panchula, et al., Nat. Mater. 3, 862 (2004). http://www.doi.org/10.1038/nmat1256
Rare Earths and Magnetism: Magnetic Properties of Rare Earth Metals, Ed. by R. J. Elliott (Plenum, New York, 1972). http://www.doi.org/10.1007/978-1-4757-5691-3_1
M. Heinemann and W. M. Temmerman, Phys. Rev. B 49, 4348 (1994). http://www.doi.org/https://doi.org/10.1103/PhysRevB.49.4348
D. Weller, S. F. Alvarado, W. Gudat, et al., Phys. Rev. Lett. 54, 1555 (1985). http://www.doi.org/https://doi.org/10.1103/PhysRevLett.54.1555
O. Krupin, G. Bihlmayer, K. Starke, et al., Phys. Rev. B 71, 201403 (2005). http://www.doi.org/https://doi.org/10.1103/PhysRevB.71.201403
P. LeClair, H. J. M. Swagten, J. T. Kohlhepp, et al., Phys. Rev. Lett. 84, 2933 (2000).
S. Zhang and P. M. Levy, Phys. Rev. Lett. 81, 5660 (1998). http://www.doi.org/https://doi.org/10.1103/PhysRevLett.81.5660
T. Zhu, X. Xiang, F. Shen, et al., Phys. Rev. B 66, 094423 (2002). http://www.doi.org/https://doi.org/10.1103/PhysRevB.66.094423
Y. T. Takahashi, Y. Shiota, S. Miwa, et al., IEEE Trans. Magn. 49, 4417 (2013). http://www.doi.org/10.1109/TMAG.2013.2247745
N. Funabashia, R. Higashida, K. Aoshima, and K. Machida, AIP Adv. 9, 035336 (2019). https://doi.org/10.1063/1.5080147
Funding
This study was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-10-2021-115 dated October 13, 2021 (internal no. 15.SIN.21.0021). The X-ray diffraction measurements were performed at the Center for Collective Use of the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences within the state assignment of the Ministry of Science and Higher Education of the Russian Federation, theme “Spin” no. 122021000036-3).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
The authors declare that they have no conflicts of interest.
Additional information
Translated by E. Bondareva
Rights and permissions
About this article
Cite this article
Yakunina, E.M., Kravtsov, E.A., Devyaterikov, D.I. et al. Structure and Magnetism of Gd/MgO/Fe Superlattice-Based Nanosystems. J. Surf. Investig. 16, 1106–1110 (2022). https://doi.org/10.1134/S102745102206057X
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S102745102206057X