Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Influence of Surface Energy Inhomogeneity on Contact Adhesion: Simulation and Experiment

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

This article has been updated

Abstract

The paper presents simulation data on the indentation of a rigid indenter with an inhomogeneous surface energy into an elastic half-space, showing that the surface energy distribution has a critical effect on the contact properties. The data include dependences of the average normal force and contact radius on the indentation depth, obtained by averaging a large number of random surface energy distributions, and 3D probability density functions of these quantities. Also presented are experimental data on the indentation of a steel indenter with chemically inhomogeneous surface properties into an elastic sheet of transparent rubber, allowing one to judge the evolution of the contact force and contact configuration. The experimental data show that the surface energy distribution has hardly any effect on the contact properties during indentation and has a strong effect on the behavior of the system during separation. The simulation and experimental data agree qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Change history

  • 31 August 2021

    Corrected issue title

Notes

  1. The approximation is for the interval 0.1 J/m2 < Δ < 0.45 J/m2, because the function f (Δ) is asymmetric at its edges. The quantity µ in (11) is calculated as an average for each Δ(RN), and hence µ(RN) в (11) coincides with the dashed-dot line in Fig. 3c.

  2. It is for this reason that only the detachment of the indenter is considered in the theoretical part of the paper (Sects. 3 and 4).

  3. Therefore, the linear dependence F(d) corresponding to a constant area at the stage of direction reversal is more pronounced in Fig. 6 than in Fig. 8.

  4. In real experiments, there is always a measurement error, and therefore, any derivative is fluctuating, which is seen in Fig. 11c. When we say that a derivative is constant, we mean that it fluctuates about a certain average value. Such fluctuations can easily be eliminated by filtration, but our choice is original data in Fig. 11c.

REFERENCES

  1. Handbook of Adhesion Technology, Silva, da L.F.M., Öchsner, A., and Adams, R.D., Eds., Berlin: Springer, 2018. https://doi.org/10.1007/978-3-319-55411-2

  2. Krachler, A.M. and Orth, K., Targeting the Bacteria-Host Interface: Strategies in Anti-Adhesion Therapy, Virulence, 2014, vol. 4, no. 4, pp. 284–294. https://doi.org/10.4161/viru.24606

    Article  Google Scholar 

  3. Berne, C., Ellison, C.K., Ducret, A., and Brun, Y.V., Bacterial Adhesion at the Single-Cell Level, Nat. Rev. Microbiol., 2018, vol. 16, pp. 616–627. https://doi.org/10.1038/s41579-018-0057-5

    Article  Google Scholar 

  4. Adhesion and Friction in Biological Systems, Gorb, S., Ed., Berlin: Springer, 2012.

  5. Autumn, K. and Gravish, N., Gecko Adhesion: Evolutionary Nanotechnology, Philos. Trans. R. Soc. A, 2008, vol. 366, no. 1870, pp. 1575–1590. https://doi.org/10.1098/rsta.2007.2173

    Article  ADS  Google Scholar 

  6. Brilliantov, N.V., Albers, N., Spahn, F., and Pöschel, T., Collision Dynamics of Granular Particles with Adhesion, Phys. Rev. E, 2007, vol. 76, no. 5, p. 051302. https://doi.org/10.1103/PhysRevE.76.051302

    Article  ADS  Google Scholar 

  7. Violano, G. and Afferrante, L., Adhesion of Compliant Spheres: An Experimental Investigation, Proc. Struct. Integr., 2019, vol. 24, pp. 251–258. https://doi.org/10.1016/j.prostr.2020.02.022

    Article  Google Scholar 

  8. Israelachvili, J., Giasson, T.S., Kuhl, T., Drummond, C., Berman, A., Luengo, G., Pan, J.-M., Heuberger, M., Ducker, W., and Alcantar, N., Some Fundamental Differences in the Adhesion and Friction of Rough versus Smooth Surfaces, Tribology Ser., 2000, vol. 38, pp. 3–12. https://doi.org/10.1016/S0167-8922(00)80107-8

    Article  Google Scholar 

  9. McFarlane, J.S. and Tabor, D., Relation between Friction and Adhesion, Proc. R. Soc. Lond. A, 1950, vol. 202, no. 1069, pp. 244–253. https://doi.org/10.1098/rspa.1950.0097

    Article  ADS  Google Scholar 

  10. Dmitriev, A.I., Nikonov, A.Yu., Österle, W., and Jim, B.C., Verification of Rabinowicz’ Criterion by Direct Molecular Dynamics Modeling, FU Mech. Eng., 2019, vol. 17, no. 2, pp. 207–215. https://doi.org/10.22190/FUME190404026D

    Article  Google Scholar 

  11. Lyashenko, I.A. and Popov, V.L., The Effect of Contact Duration and Indentation Depth on Adhesion Strength: Experiment and Numerical Simulation, Tech. Phys., 2020, vol. 65, no. 10, pp. 1695–1707. https://doi.org/10.1134/S1063784220100126

    Article  Google Scholar 

  12. Lyashenko, I.A. and Pohrt, R., Adhesion between Rigid Indenter and Soft Rubber Layer: Influence of Roughness, Front. Mech. Eng., 2020, vol. 6, p. 49. https://doi.org/10.3389/fmech.2020.00049

    Article  Google Scholar 

  13. Johnson, K.L., Kendall, K., and Roberts, A.D., Surface Energy and the Contact of Elastic Solids, Proc. Roy. Soc. Lond. A, 1971, vol. 324, no. 1558, pp. 301–313. https://doi.org/10.1098/rspa.1971.0141

    Article  ADS  Google Scholar 

  14. Derjaguin, B.V., Muller, V.M., and Toporov, Y.P., Effect of Contact Deformations on the Adhesion of Particles, J. Colloid. Interf. Sci., 1975, vol. 53, no. 2, pp. 314–326. https://doi.org/10.1016/0021-9797(75)90018-1

    Article  ADS  Google Scholar 

  15. Maugis, D., Adhesion of Spheres: The JKR–DMT Transition Using a Dugdale Model, J. Colloid Interf. Sci., 1992, vol. 150, no. 1, pp. 243–269. https://doi.org/10.1016/0021-9797(92)90285-T

    Article  ADS  Google Scholar 

  16. Tang, T., Hou, X., Xiao, Y., Su, Y., Shi, Y., and Rao, X., Research on Motion Characteristics of Space Truss-Crawling Robot, Int. J. Adv. Robot. Syst., 2019, vol. 16, no. 1, pp. 1–17. https://doi.org/10.1177/1729881418821578

    Article  Google Scholar 

  17. Marcelo, G. and Ronaldo, H., 25 Years of Clinical Experience in Adhesive Dentistry: International Academy for Adhesive Dentistry (IAAD) Newsletter, J. Adhes. Dent., 2020, vol. 22, no. 3, pp. 331–333. https://doi.org/10.3290/j.jad.a44595

    Article  Google Scholar 

  18. Deng, W. and Kesari, H., Depth-Dependent Hysteresis in Adhesive Elastic Contacts at Large Surface Roughness, Sci. Rep., 2019, vol. 9, p. 1639. https://doi.org/10.1038/s41598-018-38212-z

    Article  ADS  Google Scholar 

  19. Greenwood, J.A., Reflections on and Extensions of the Fuller and Tabor Theory of Rough Surface Adhesion, Tribol. Lett., 2017, vol. 65, p. 159. https://doi.org/10.1007/s11249-017-0938-1

    Article  Google Scholar 

  20. Ciavarella, M. and Papangelo, A., On the Degree of Irreversibility of Friction in Sheared Soft Adhesive Contacts, Tribol. Lett., 2020, vol. 68, p. 81. https://doi.org/10.1007/s11249-020-01318-5

    Article  Google Scholar 

  21. Radhakrishnan, H. and Akarapu, S., Two-Dimensional Finite Element Analysis of Elastic Adhesive Contact of a Rough Surface, Sci. Rep., 2020, vol. 10, p. 5402. https://doi.org/10.1038/s41598-020-61187-9

    Article  ADS  Google Scholar 

  22. Violano, G. and Afferrante, L., Modeling the Adhesive Contact of Rough Soft Media with an Advanced Asperity Model, Tribol. Lett., 2019, vol. 67, p. 119. https://doi.org/10.1007/s11249-019-1232-1

    Article  Google Scholar 

  23. Karpitschka, S., van Wijngaarden, L., and Snoeijer, J.H., Surface Tension Regularizes the Crack Singularity of Adhesion, Soft Matter., 2016, vol. 12, no. 19, pp. 4463–4471. https://doi.org/10.1039/C5SM03079J

    Article  ADS  Google Scholar 

  24. Panin, V.E., Synergetic Principles of Physical Mesomechanics, Phys. Mesomech., 2000, vol. 3, no. 6, pp. 5–34.

    Google Scholar 

  25. Popov, V.L., Heß, M., and Willert, E., Handbook of Contact Mechanics: Exact Solutions of Axisymmetric Contact Problems, Berlin: Springer, 2019. https://doi.org/10.1007/978-3-662-58709-6

  26. Popova, E. and Popov, V.L., Ludwig Föppl and Gerhard Schubert: Unknown Classics of Contact Mechanics, Z. Angew. Math. Mech. J. Appl. Math. Mech., 2020, vol. 100, no. 9, p. e202000203. https://doi.org/10.1002/zamm.202000203

  27. Heß, M., Über die Exakte Abbildung Ausgewählter Dreidimensionaler Kontakte auf Systeme Mit Niedrigerer Räumlicher Dimension, Berlin: Cuvillier Verlag, 2011.

  28. Popov, V.L., Adhesion Hysteresis due to Chemical Heterogeneity, Preprints, 2020, p. 2020030131. https://doi.org/10.20944/preprints202003.0131.v1

  29. Box, G.E.P. and Muller, M.E., A Note on the Generation of Random Normal Deviates, Ann. Math. Stat., 1958, vol. 29, no. 2, pp. 610–611. https://doi.org/10.1214/aoms/1177706645

    Article  Google Scholar 

  30. Waters, J.F. and Guduru, P.R., Mode-Mixity-Dependent Adhesive Contact of a Sphere on a Plane Surface, Proc. R. Soc. A, 2010, vol. 466, no. 2117, pp. 1303–1325. https://doi.org/10.1098/rspa.2009.0461

    Article  ADS  Google Scholar 

  31. Liu, Z., Lu, H., Zheng, Y., Tao, D., Meng, Y., and Tian, Y., Transient Adhesion in a Non-Fully Detached Contact, Sci. Rep., 2018, vol. 8, p. 6147. https://doi.org/10.1038/s41598-018-24587-6

    Article  ADS  Google Scholar 

  32. Li, Q., Pohrt, R., Lyashenko, I.A., and Popov, V.L., Boundary Element Method for Nonadhesive and Adhesive Contacts of a Coated Elastic Half-Space, Proc. Inst. Mech. E. J. Eng. Tribol., 2020, vol. 234, no. 1, pp. 73–83. https://doi.org/10.1177/1350650119854250

    Article  Google Scholar 

  33. Hertz, H.J., Ueber die Berührung Fester Elastischer Körper, J. Reine Angew. Math., 1882, no. 92, pp. 156–171. https://doi.org/10.1515/crll.1882.92.156

    Article  MathSciNet  Google Scholar 

  34. Popov, V.L., Adhesive Contribution to Friction, AIP Conf. Proc., 2019, vol. 2167, p. 020286. https://doi.org/10.1063/1.5132153

    Article  Google Scholar 

  35. Lyashenko, I.A., and Popov, V.L., Dissipation of Mechanical Energy in an Oscillating Adhesive Contact between a Hard Indenter and an Elastomer, Tech. Phys., Lett., 2020, vol. 46, no. 11, pp. 1092–1095. https://doi.org/10.1134/S1063785020110097

  36. Popov, V.L., Pohrt, R., and Li, Q., Strength of Adhesive Contacts: Influence of Contact Geometry and Material Gradients, Friction, 2017, vol. 5, no. 3, pp. 308–325. https://doi.org/10.1007/s40544-017-0177-3

    Article  Google Scholar 

Download references

Funding

The work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG), project PO 810-55-1 and Tomsk State University Competitiveness Improvement Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Popov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyashenko, I.A., Popov, V.L. Influence of Surface Energy Inhomogeneity on Contact Adhesion: Simulation and Experiment. Phys Mesomech 24, 426–440 (2021). https://doi.org/10.1134/S102995992104007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102995992104007X

Keywords: