Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Reverse-current effect in present-day models of solar flares: Theory and high-accuracy observations

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We propose an accurate analytical model for the source of hard X-ray emission from a flare in the form of a “thick target” with a reverse current to explain the results of present-day observations of solar flares onboard the GOES, Hinode, RHESSI, and TRACE satellites. The model, one-dimensional in coordinate space and two-dimensional in velocity space, self-consistently takes into account the fact that the beam electrons lose the kinetic energy of their motion along the magnetic field almost without any collisions under the action of the reverse-current electric field. Some of the electrons return from the emission source to the acceleration region without losing the kinetic energy of their transverse motion. Based on the observed hard X-ray bremsstrahlung spectrum, the model allows the injection spectrum of accelerated electrons to be reconstructed with a high accuracy. As an example, we consider the white-light flare of December 6, 2006, which was observed with a high spatial resolution in the optical wavelength range at the main maximum of hard X-ray emission. Within the framework of our model, we show that to explain the hard X-ray spectrum, the flux density of the energy transferred by electrons with energies above 18 keV was ∼3 × 1013 erg cm−2 s−1. This exceeds the habitual values typical of the classical model of a thick target without a reverse current by two orders of magnitude. The electron density in the beam is also very high: ∼1011 cm−3. A more careful consideration of plasma processes in such dense electron beams is needed when the physical parameters of a flare are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Asai, J. Kiyohara, H. Takasaki, N. Narukage, T. Yokoyama, S. Masuda, M. Shimojo, and H. Nakajima, Astrophys. J. 763, 87 (2013).

    Article  ADS  Google Scholar 

  2. M. J. Aschwanden, Particle Acceleration and Kinematics in Solar Flares (Kluwer Academic Publ., Dordrecht, 2002), p. 227.

    Book  Google Scholar 

  3. M. Battaglia and E. P. Kontar, Astrophys. J. 760, 142 (2013).

    Article  ADS  Google Scholar 

  4. J. C. Brown, Solar Phys. 18, 489 (1971).

    Article  ADS  Google Scholar 

  5. M. Casolino, M. de Simone, N. de Pascale, V. di Felice, L. Marcelli, M. Minori, P. Picozza, R. Sparvoli, et al., Nucl. Phys. 190, 293 (2009).

    Google Scholar 

  6. A. Caspi, S. Krucker, and R. P. Lin, Astrophys. J. 781, 43 (2014).

    Article  ADS  Google Scholar 

  7. S.V. Diakonov and B.V. Somov, Solar Phys. 116, 119 (1988).

    Article  ADS  Google Scholar 

  8. S. V. Diakonov and B. V. Somov, Kinem. Fiz. Nebesn. Tel 6, 48 (1990).

    ADS  Google Scholar 

  9. G. Elwert and E. Haug, Solar Phys. 15, 234 (1970).

    Article  ADS  Google Scholar 

  10. L. Feng, T. Weigelmann, Y. Su, B. Inhester, Y. P. Li, X. D. Sun, and W. Q. Gan, Astrophys. J. 765, 37 (2013).

    Article  ADS  Google Scholar 

  11. P. A. Gritsyk and B. V. Somov, Mosc. Univ. Phys. Bull. 66, 466 (2011).

    Article  ADS  Google Scholar 

  12. H. Hudson and J. Ryan, Astrophys. J. 33, 239 (1995).

    ADS  Google Scholar 

  13. S. Ishikawa, S. Krucker, T. Takahashi, and R. P. Lin, Astrophys. J. 737, 48 (2011).

    Article  ADS  Google Scholar 

  14. S. Krucker, H. S. Hudson, N. L. S. Jeffrey, M. Battaglia, E. P. Kontar, A. O. Benz, A. Csillaghy, and R. P. Lin, Astrophys. J. 739, 96 (2011).

    Article  ADS  Google Scholar 

  15. Yu. E. Litvinenko and B. V. Somov, Solar Phys. 131, 319 (1991).

    Article  ADS  Google Scholar 

  16. W. Liu, O. Chen, and V. Petrosia, Astrophys. J. 767, 168 (2013).

    Article  ADS  Google Scholar 

  17. L. Nocera, Yu. I. Skrynnikov, and B. V. Somov, Solar Phys. 97, 81 (1985).

    Article  ADS  Google Scholar 

  18. G. H. J. van den Oord, Astron. Astrophys. 234, 496 (1990).

    ADS  MATH  Google Scholar 

  19. A. V. Oreshina and B. V. Somov, Astron. Lett. 37, 726 (2011).

    Article  ADS  Google Scholar 

  20. A. Y. Shih, R. P. Lin, and D. M. Smith, Astrophys. J. 698, 152 (2009).

    Article  ADS  Google Scholar 

  21. P. J. A. Simões and E. P. Kontar, Astron. Astrophys. 551, 135 (2013).

    Article  ADS  Google Scholar 

  22. B. V. Somov, Physical Processes in Solar Flares (Dordrecht, London, 1993), p. 249.

    Google Scholar 

  23. B. V. Somov, Cosmic Plasma Physics (Kluwer Academic, Dordrecht, 2000), p. 652.

    Book  Google Scholar 

  24. B. V. Somov, Plasma Astrophysics. Part I: Fundamentals and Practice (Springer SBM, New York, 2012), p. 498.

    Google Scholar 

  25. B. V. Somov, Plasma Astrophysics Part II: Reconnection and Flares (Springer SBM, New York, 2013), p. 504.

    Google Scholar 

  26. B. V. Somov and P. A. Gritsyk, Mosc. Univ. Phys. Bull. 67, 102 (2012).

    Article  ADS  Google Scholar 

  27. B. V. Somov and S. I. Syrovatskii, Sov. Phys. Usp. 19, 813 (1976).

    Article  ADS  Google Scholar 

  28. L. Sui, G. D. Holman, and B. R. Dennis, Astrophys. J. 612, 546 (2004).

    Article  ADS  Google Scholar 

  29. Z. Svestka, Solar Flares (D. Reidel, Dordrecht, 1976).

    Book  Google Scholar 

  30. S. I. Syrovatskii and O. P. Shmeleva, Sov. Astron. 16, 273 (1972).

    ADS  Google Scholar 

  31. S. I. Syrovatskii and O. P. Shmeleva, in Solar Terrestrial Relations, Proceedings of the Conference, Calgary, Aug. 28–Sep. 1, 1972 (Univ. Calgary, 1973), p. 243.

    Google Scholar 

  32. S. Tsuneta, S. Masuda, T. Kosugi, and J. Sato, Astrophys. J. 478, 787 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Gritsyk.

Additional information

Original Russian Text © P.A. Gritsyk, B.V. Somov, 2014, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2014, Vol. 40, No. 8, pp. 554–565.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gritsyk, P.A., Somov, B.V. Reverse-current effect in present-day models of solar flares: Theory and high-accuracy observations. Astron. Lett. 40, 499–509 (2014). https://doi.org/10.1134/S1063773714080040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773714080040

Keywords