Abstract
The present review is focused on the problem of interaction of neutron waves with moving matter. The validity of the 1/v law for ultracold neutrons and the possibility to characterize the interaction of neutrons with matter using the effective potential were verified in the so-called null Fizeau experiments. A neutron wave in such experiments propagates through a flat sample that moves parallel to its edges. The observation of effects caused by this motion provides evidence that the concept of constant effective potential is not correct. The second part of the review deals with the prediction and the first observation of the accelerated matter effect (a change in the energy of neutrons in passing through a refractive sample that moves with an acceleration directed along or opposite the direction of neutron propagation). The characteristic features of this phenomenon in the case of birefringent material are considered. In conclusion, the problem of propagation of neutron waves in matter moving with giant acceleration is discussed.
Similar content being viewed by others
References
H. Halban and P. Preiswerk, “Preuve expérimentale de la diffraction des neutrons,” C. R. Acad. Sci. 203, 73–75 (1936).
D. P. Mitchell and P. N. Powers, “Bragg reflection of slow neutrons,” Phys. Rev. 50, 486–487 (1936).
W. M. Elsasser, “Sur la diffraction des neutrons lents par les substances cristallines,” C. R. Acad. Sci. 202, 1029–1030 (1936).
H. L. Anderson, in Enrico Fermi. Note e Memorie (Collected Papers) (Accademia Nazionale dei Lincei, Univ. of Chicago Press, 1962), Vol. 2, p. 425.
E. Fermi and W. H. Zinn, “Collimation of the neutron beam from thermal column of CP-3 and the index of refraction for thermal neutrons,” in Enrico Fermi. Note e Memorie (Collected Papers) (Accademia Nazionale dei Lincei, Univ. of Chicago Press, 1962), Vol. 2, p. 425.
L. J. Foldy, “The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers,” Phys. Rev. 67, 107–119 (1945).
M. Lax, “Multiple scattering of waves,” Rev. Mod. Phys. 23, 287–310 (1951).
M. Lax, “Multiple scattering of waves. II. The effective field in dense systems,” Phys. Rev. 85, 621–629 (1952).
Ya. B. Zel’dovich, “Storage of cold neutrons,” J. Exp. Theor. Phys. 9, 1389–1390 (1959).
V. I. Lushchikov, Yu. N. Pokotilovskii, A. V. Strelkov, and F. L. Shapiro, “Observation of ultracold neutrons,” JETP Lett. 9, 23–26 (1969).
F. L. Shapiro, “Ultracold neutrons,” in Neutron Studies (Nauka, Moscow, 1976), pp. 229–247 [in Russian].
A. I. Frank, “I. M. Frank and the optics of ultracold neutrons,” Phys. -Usp. 52, 397–405 (2009).
I. M. Frank, “Neutron optics and ultracold neutrons,” Sov. Phys. Usp. 34, 988–996 (1991).
V. F. Sears, “Fundamental aspects of neutron optics,” Phys. Rep. 82, 1–29 (1982).
M. Warner and J. E. Gubernatis, “Neutron refractive index: A Fermi–Huygens theory,” Phys. Rev. B 32, 6347–6358 (1985).
A. I. Frank and V. G. Nosov, “Long-wavelength neutron dispersion law and the possibility of its precise experimental test,” Yad. Fiz. 58, 453–460 (1995).
V. G. Nosov and A. I. Frank, “Superslow neutrons and the dispersion law for neutron waves in matter,” Phys. Rev. A 55, 1129–1139 (1997).
V. K. Ignatovich and M. Utsuro, “Optical potential and dispersion law for long-wavelength neutrons,” Phys. Rev. B 55, 14774 (1997).
A. L. Barabanov and S. T. Belyaev, “On the potential of ultracold neutrons interaction with matter,” Phys. At. Nucl. 62, 769–775 (1999).
A. G. Klein and S. A. Werner, “Neutron optics,” Rep. Prog. Phys. 46, 259–335 (1983).
M. Arif, H. Kaiser, S. A. Werner, A. Cimmino, W. A. Hamilton, A. G. Klein, and G. I. Opat, “Null Fizeau effect for thermal neutrons in moving matter,” Phys Rev. A 31, 1203–1205 (1985).
V. F. Sears, “Fizeau effect for neutrons,” Phys. Rev. A 32, 2524–2525 (1985).
M. Arif, H. Kaiser, R. Clothier, S. A. Werner, R. Berliner, W. A. Hamilton, A. Cimmino, and A. G. Klein, “Fizeau effect for neutrons passing through matter at a nuclear resonance,” Physica B+C 151, 63–67 (1988).
M. Arif, H. Kaiser, R. Clothier, S. A. Werner, W. A. Hamilton, A. Cimmino, and A. G. Klein, “Observation of a motion-induced phase shift of neutron de Broglie waves passing through matter near a nuclear resonance,” Phys. Rev. A 39, 931–937 (1989).
H. R. Bilger and A. T. Zavodny, “Fresnel drag in a ring laser: Measurement of the dispersive term,” Phys. Rev. A 5, 591–599 (1972).
A. A. Seregin, “Concerning a bound neutron in matter,” J. Exp. Theor. Phys. 46, 859–861 (1977).
K.-A. Steinhauser, A. Steyerl, H. Scheckenhofer, and S. S. Malik, “Observation of quasibound states of the neutron in matter,” Phys. Rev. Lett 44, 1306–1309 (1980).
Yu. N. Pokotilovskii and M. I. Novopoltsev, Communication OIYaI R3-81-821 (Joint Inst. for Nuclear Research, Dubna, 1981).
M. I. Novopoltsev, Yu. N. Pokotilovskii, and I. G. Shelkova, “Time-of-flight spectrometry of ultracold neutrons with a thin film ferromagnetic chopper,” Nucl. Instrum. Methods Phys. Res., Sect. A 264, 518–520 (1988).
A. Steyerl, T. Ebisawa, K.-A. Steinhauser, and M. Utsuro, “Experimental study of macroscopic coupled resonators for neutron waves,” Z. Phys. B 41, 283–286 (1981).
A. Steyerl, W. Drexel, S. S. Malik, and E. Gutsmiedl, “Neutron resonators and interferometers for very low energy neutrons,” Physica B+C 151, 36–43 (1988).
I. V. Bondarenko, A. I. Frank, S. N. Balashov, S. V. Masalovich, and V. G. Nosov, “Proposed fundamental investigations using neutron interference filters and gravity spectrometry,” J. Phys. Soc. Jpn. 65 Suppl. A, 29–32 (1996).
I. V. Bondarenko, A. I. Frank, S. V. Balashov, S. V. Masalovich, V. G. Nosov, A. Cimmino, A. Klein, P. Geltenbort, and P. Hoghoj, “High resolution spectrometer for the experimental test of the long-wave neutron dispersion law,” in Proc. V Int. Seminar on Interaction of Neutrons with Nuclei, Dubna, Russia, 1997, E3-97-213, pp. 418–421.
I. V. Bondarenko, A. V. Krasnoperov, A. I. Frank, S. N. Balashov, S. V. Masalovich, V. G. Nosov, P. Geltenbort, P. Hoghoj, A. G. Klein, and A. Cimmino, “Experimental check of the dispersion law for ultracold neutrons,” JETP Lett. 67, 786–792 (1998).
I. V. Bondarenko, V. I. Bodnarchuk, S. N. Balashov, P. Geltenbort, A. G. Klein, A. V. Kozlov, D. A. Korneev, S. V. Masalovich, V. G. Nosov, A. I. Frank, P. Hoghoj, and A. Cimmino, “Neutron interference filters and fundamental experiments with ultracold neutrons,” Phys. At. Nucl. 62, 721–737 (1999).
A. I. Frank, S. V. Balashov, V. I. Bodnarchuk, I. V. Bondarenko, A. Cimmino, P. Geltenbort, P. Hoghoj, A. G. Klein, D. Korneev, A. V. Kozlov, and S. V. Masalovich, “Neutron multilayer structures for fundamental experiments in UCN optics,” Proc. SPIE 3767, 360–371 (1999).
A. I. Frank, S. N. Balashov, I. V. Bondarenko, P. Geltenbort, P. Hoghoj, A. V. Kozlov, S. V. Masalovich, and B. P. Toperverg, “Resonant tunneling of UCN through the moving interference filter and experimental test of the UCN dispersion law,” Communication E3-2004-216 (Joint Inst. for Nuclear Research, Dubna, 2004).
V. K. Ignatovich, Physics of Ultracold Neutrons (Nauka, Moscow, 1986) [in Russian].
A. I. Frank, P. Geltenbort, G. V. Kulin, and A. N. Strepetov, “Experimental verification of the 1/v law for the absorption cross section of ultracold neutrons in natural gadolinium,” JETP Lett. 84, 105–109 (2006).
A. I. Frank, V. I. Bodnarchuk, P. Geltenbort, I. L. Karpikhin, G. V. Kulin, and O. V. Kulina, “Neutron optics of strongly absorbing media and interaction of long-wave neutrons with gadolinium films,” Phys. At. Nucl. 66, 1831–1845 (2003).
I. V. Bondarenko, S. N. Balashov, A. Cimmino, P. Geltenbort, A. I. Frank, P. Hoghoj, A. G. Klein, S. V. Masalovich, and V. G. Nosov, “UCN gravity spectrometry using neutron interference filters for fundamental investigations in neutron optics,” Nucl. Instrum. Methods Phys. Res., Sect. A 440, 591–596 (2000).
H. Rauch, M. Zawisky, Ch. Stellmach, and P. Geltenbort, “Giant absorption cross section of ultracold neutrons in gadolinium,” Phys. Rev. Lett. 83, 4955–4958 (1999).
G. V. Kulin, A. N. Strepetov, A. I. Frank, P. Geltenbort, S. V. Goryunov, M. Jentschel, and D. V. Kustov, “New experimental test of dispersion law for very slow neutrons,” Phys. Lett. A 378, 2553–2556 (2014).
M. A. Horne and A. Zeilinger, “Fizeau effects for thermal neutrons,” in Neutron Interferometry, Ed. by U. Bonse and H. Rauch (Clarendon, Oxford, 1979), pp. 350–354.
A. G. Klein, G. I. Opat, A. Cimmino, A. Zeilinger, W. Treimer, and R. Gähler, “Neutron propagation in moving matter: the Fizeau experiment with massive particles,” Phys. Rev. Lett. 46, 1551–1554 (1981).
U. Bonse and A. Rumpf, “Interferometric measurement of neutron Fizeau effect,” Phys. Rev. Lett. 56, 2411–2444 (1986).
M. A. Horne, A. Zeilinger, A. G. Klein, and G. I. Opat, “Neutron phase shift in moving matter,” Phys. Rev. A 28, 1–6 (1983).
U. Bonse and A. Rumpf, “Thermal-neutron propagation in moving media,” Phys. Rev. A 37, 1059–1064 (1988).
A. Peres, “Neutron propagation in moving matter,” Am. J. Phys. 51, 947–950 (1983).
C. Yeh, “Reflection and transmission of electromagnetic waves by a moving dielectric medium,” J. Appl. Phys. 36, 3513–3517 (1965).
K. Littrell, S. Werner, and B. Allman, “Neutron interferometry in non-inertial reference frames,” J. Phys. Soc. Jpn. 65 Suppl. A, 98–101 (1996).
K. Tanaka, “Reflection and transmission of electromagnetic waves by a linearly accelerated dielectric slab,” Phys. Rev. A 25, 385–390 (1982).
R. Neutze and G. E. Stedman, “Detecting the effects of linear acceleration on the optical response of matter,” Phys. Rev. A 58, 82–90 (1998).
F. V. Kowalski, “Interaction of neutrons with accelerating matter: Test of the equivalence principle,” Phys. Lett. A 182, 335–340 (1993).
V. G. Nosov and A. I. Frank, “Interaction of slow neutrons with moving matter,” Phys. At. Nucl. 61, 613–623 (1998).
A. I. Frank, P. Geltenbort, G. V. Kulin, D. V. Kustov, V. G. Nosov, and A. N. Strepetov, “Effect of accelerating matter in neutron optics,” JETP Lett. 84, 363–367 (2006).
A. I. Frank, P. Geltenbort, M. Jentschel, D. V. Kustov, G. V. Kulin, V. G. Nosov, and A. N. Strepetov, “Effect of accelerated matter in neutron optics,” Phys. At. Nucl. 71, 1656–1674 (2008).
A. I. Frank, P. Geltenbort, M. Jentschel, D. V. Kustov, G. V. Kulin, and A. N. Strepetov, “New experiment on the observation of the effect of accelerating matter in neutron optics,” JETP Lett. 93, 361–365 (2011).
A. I. Frank, P. Geltenbort, M. Jentschel, G. V. Kulin, D. V. Kustov, and A. N. Strepetov, “Accelerating medium effect as a general wave phenomenon,” J. Phys.: Conf. Ser. 340, 012042 (2012).
A. I. Frank and V. A. Naumov, “Interaction of waves with a birefringent medium moving with acceleration,” Phys. At. Nucl. 76, 1423–1433 (2013).
L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, 6th ed. (Fizmatlit, Moscow, 2004) [in Russian].
L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Nauka, Moscow, 1982), p. 405 [in Russian].
A. I. Frank, “On the dispersion law of neutrons in accelerated matter,” JETP Lett. 100, 613–614 (2015).
A. I. Frank, P. Geltenbort, G. V. Kulin, and A. N. Strepetov, “A quantum time lens for ultracold neutrons,” JETP Lett. 78, 188–192 (2003).
A. M. Kamchatnov, V. G. Nosov, and A. I. Frank, “The depth of penetration of magnetic field into a superconductor and the polarization ratio for UCN,” in Proc. 1st Int. Conf. on Neutron Physics, Kiev, 1987 (TsNIIatominform, Moscow, 1988), Vol. 1, pp. 116–117.
A. V. Kozlov and A. I. Frank, “Dynamic reflection and refraction of neutrons at the boundaries of matter characterized by a variable magnetic induction,” Phys. At. Nucl. 68, 1104–1119 (2005).
G. Badurek, H. Rauch, and J. Summhammer, “Polarized neutron interferometry: A Survey,” Physica B+C 151, 82–92 (1988).
R. Golub and R. Gähler, “A neutron resonance spin echo spectrometer for quasi-elastic and inelastic scattering,” Phys. Lett. A 123, 43–48 (1987).
R. Gähler, R. Golub, and T. Keller, “Neutron resonance spin echo—a new tool for high resolution spectroscopy,” Phys. B 180–181, 899–902 (1992).
W. Besenböck, R. Gähler, P. Hank, R. Kahn, M. Köppe, C.-H. De Novion, W. Petry, and J. Wuttke, “First scattering experiment on MIEZE: a Fourier transform time-of-flight spectrometer using resonance coils,” J. Neutron Res. 7, 65–74 (1998).
A. I. Frank and A. V. Kozlov, “Dynamic reflection and refraction of neutrons,” Phys. B 404, 2550–2552 (2009).
V. G. Baryshevskii, S. V. Cherepitsa, and A. I. Frank, “Neutron spin interferometry,” Phys. Lett. A 153, 299–302 (1991).
V. G. Baryshevskii and M. I. Podgoretskii, “Nuclear precession of neutrons,” J. Exp. Theor. Phys. 20, 704 (1965).
A. Abragam, G. L. Bacchella, H. Glätti, P. Meriel, M. Pinot, and J. Piesvaux, “Pseudo magnetic moments of 1H and 51V measured by a new method,” Phys. Rev. Lett. 31, 776–779 (1973).
F. C. Michel, “Parity nonconservation in nuclei,” Phys. Rev. 133, B329–B349 (1964).
L. Stodolsky, “Neutron optics and weak currents,” Phys. Lett. B 50, 352–356 (1974).
M. Forte, B. R. Heckel, N. F. Ramsey, K. Green, G. L. Greene, J. Byrne, and J. M. Pendlebury, “First measurement of parity-nonconserving neutron-spin rotation: The tin isotopes,” Phys. Rev. Lett. 45, 2088–2092 (1980).
L. Stodolsky, “Parity violation in threshold neutron scattering,” Nucl. Phys. B 197, 213–227 (1982).
O. P. Sushkov and V. V. Flambaum, “Parity breaking in the interaction of neutrons with heavy nuclei,” Sov. Phys. Usp. 25, 1–12 (1982).
Neutron Spin Echo, Ed. by F. Mezei (Springer-Verlag, 1980).
I. M. Frank and A. I. Frank, “Applicability of the Fermat principle to the optics of ultracold neutrons,” JETP Lett. 28, 516–517 (1978).
J. Felber, R. Gähler, C. Rausch, and R. Golub, “Matter waves at a vibrating surface: Transition from quantum-mechanical to classical behavior,” Phys. Rev. A 53, 319–328 (1996).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © A.I. Frank, 2016, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016, Vol. 47, No. 4.
Rights and permissions
About this article
Cite this article
Frank, A.I. Ultracold neutrons and the interaction of waves with moving matter. Phys. Part. Nuclei 47, 647–666 (2016). https://doi.org/10.1134/S1063779616040067
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063779616040067