Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Phase separation, edge currents, and Hall effect for active matter with Magnus dynamics

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We examine run-and-tumble disks in two-dimensional systems where the particles also have a Magnus component to their dynamics. For increased activity, we find that the system forms a motility-induced phase-separated (MIPS) state with chiral edge flow around the clusters, where the direction of the current is correlated with the sign of the Magnus term. The stability of the MIPS state is non-monotonic as a function of increasing Magnus term amplitude, with the MIPS region first extending down to lower activities followed by a break up of MIPS at large Magnus amplitudes into a gel-like state. We examine the dynamics in the presence of quenched disorder and a uniform drive and find that the bulk flow exhibits a drive-dependent Hall angle. This is a result of the side jump effect produced by scattering from the pinning sites and is similar to the behavior found for skyrmions in chiral magnets with quenched disorder.

Graphical abstract

Active Magnus particles without pinning or drift force in the presence of gradually increasing Magnus terms showing a a rotating cluster mode, b a rotating cluster with clear shear banding at its edge, c a sheared band spanning the system, and d a disordered state where neither clusters nor shear bands can form. The colors indicate the net displacement of the particles, while the arrows show the rotation or shear directions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013). https://doi.org/10.1103/RevModPhys.85.1143

    Article  ADS  Google Scholar 

  2. Y. Fily, M.C. Marchetti, Athermal phase separation of self-propelled particles with no alignment. Phys. Rev. Lett. 108, 235702 (2012). https://doi.org/10.1103/PhysRevLett.108.235702

    Article  ADS  Google Scholar 

  3. G.S. Redner, M.F. Hagan, A. Baskaran, Structure and dynamics of a phase-separating active colloidal fluid. Phys. Rev. Lett. 110, 055701 (2013). https://doi.org/10.1103/PhysRevLett.110.055701

    Article  ADS  Google Scholar 

  4. J. Palacci, S. Sacanna, A.P. Steinberg, D.J. Pine, P.M. Chaikin, Living crystals of light-activated colloidal surfers. Science 339(6122), 936–940 (2013). https://doi.org/10.1126/science.1230020

    Article  ADS  Google Scholar 

  5. I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 110, 238301 (2013). https://doi.org/10.1103/PhysRevLett.110.238301

    Article  ADS  Google Scholar 

  6. M.E. Cates, J. Tailleur, Motility-induced phase separation. Ann. Rev. Condens. Mater. Phys. 6, 219–244 (2015). https://doi.org/10.1146/annurev-conmatphys-031214-014710

    Article  ADS  Google Scholar 

  7. C. Reichhardt, C.J.O. Reichhardt, Absorbing phase transitions and dynamic freezing in running active matter systems. Soft Matter 10(38), 7502–7510 (2014). https://doi.org/10.1039/c4sm01273a

    Article  ADS  Google Scholar 

  8. O. Chepizhko, E.G. Altmann, F. Peruani, Optimal noise maximizes collective motion in heterogeneous media. Phys. Rev. Lett. 110, 238101 (2013). https://doi.org/10.1103/PhysRevLett.110.238101

    Article  ADS  Google Scholar 

  9. A. Morin, N. Desreumaux, J.-B. Caussin, D. Bartolo, Distortion and destruction of colloidal flocks in disordered environments. Nat. Phys. 13(1), 63–67 (2017). https://doi.org/10.1038/nphys3903

    Article  Google Scholar 

  10. C. Sándor, A. Libál, C. Reichhardt, C.J.O. Reichhardt, Dewetting and spreading transitions for active matter on random pinning substrates. J. Chem. Phys. 146(20), 204903 (2017). https://doi.org/10.1063/1.4983344

    Article  ADS  Google Scholar 

  11. D. Yllanes, M. Leoni, M.C. Marchetti, How many dissenters does it take to disorder a flock? New J. Phys. 19, 103026 (2017). https://doi.org/10.1088/1367-2630/aa8ed7

    Article  ADS  Google Scholar 

  12. C. Sándor, A. Libál, C. Reichhardt, C.J. Olson Reichhardt, Dynamic phases of active matter systems with quenched disorder. Phys. Rev. E 95, 032606 (2017). https://doi.org/10.1103/PhysRevE.95.032606

    Article  ADS  Google Scholar 

  13. A. Chardac, S. Shankar, M.C. Marchetti, D. Bartolo, Emergence of dynamic vortex glasses in disordered polar active fluids. Proc. Natl. Acad. Sci. (USA) 118(10), 2018218118 (2021). https://doi.org/10.1073/pnas.2018218118

    Article  MathSciNet  Google Scholar 

  14. T. Bhattacharjee, S.S. Datta, Bacterial hopping and trapping in porous media. Nat. Commun. 10, 2075 (2019). https://doi.org/10.1038/s41467-019-10115-1

  15. S. Shi, H. Li, G. Feng, W. Tian, K. Chen, Transport of self-propelled particles across a porous medium: trapping, clogging, and the Matthew effect. Phys. Chem. Chem. Phys. 22, 14052 (2020). https://doi.org/10.1039/D0CP01923B

    Article  Google Scholar 

  16. C. Reichhardt, C.J. Olson Reichhardt, Active matter transport and jamming on disordered landscapes. Phys. Rev. E 90, 012701 (2014). https://doi.org/10.1103/PhysRevE.90.012701

    Article  ADS  Google Scholar 

  17. H. Aref, J.B. Kadtke, I. Zawadzki, L.J. Campbell, B. Eckhardt, Point vortex dynamics: recent results and open problems. Fluid Dyn. Res. 3(1–4), 63–74 (1988). https://doi.org/10.1016/0169-5983(88)90044-5

    Article  ADS  Google Scholar 

  18. C. Reichhardt, C.J.O. Reichhardt, Dynamics of Magnus-dominated particle clusters, collisions, pinning, and ratchets. Phys. Rev. E 101, 062602 (2020). https://doi.org/10.1103/PhysRevE.101.062602

    Article  ADS  Google Scholar 

  19. V. Novosad, F.Y. Fradin, P.E. Roy, K.S. Buchanan, K.Y. Guslienko, S.D. Bader, Magnetic vortex resonance in patterned ferromagnetic dots. Phys. Rev. B 72, 024455 (2005). https://doi.org/10.1103/PhysRevB.72.024455

    Article  ADS  Google Scholar 

  20. A. Melzer, H. Krüger, D. Maier, S. Schütt, Physics of magnetized dusty plasmas. Rev. Mod. Plasma Phys. 5, 11 (2021). https://doi.org/10.1007/s41614-021-00060-2

    Article  ADS  Google Scholar 

  21. R. Shinde, J.U. Sommer, H. Löwen, A. Sharma, Strongly enhanced dynamics of a charged Rouse dimer by an external magnetic field. PNAS Nexus 1, 119 (2022). https://doi.org/10.1093/pnasnexus/pgac119

    Article  Google Scholar 

  22. D. Doshi, A. Gromov, Vortices as fractons. Commun. Phys. 4, 44 (2021). https://doi.org/10.1038/s42005-021-00540-4

    Article  Google Scholar 

  23. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Skyrmion lattice in a chiral magnet. Science 323(5916), 915–919 (2009). https://doi.org/10.1126/science.1166767

    Article  ADS  Google Scholar 

  24. N. Nagaosa, Y. Tokura, Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8(12), 899–911 (2013). https://doi.org/10.1038/NNANO.2013.243

    Article  ADS  Google Scholar 

  25. K. Everschor-Sitte, M. Sitte, Real-space Berry phases: Skyrmion soccer (invited). J. Appl. Phys. 115(17), 172602 (2014). https://doi.org/10.1063/1.4870695

    Article  ADS  Google Scholar 

  26. C. Reichhardt, C.J.O. Reichhardt, M. Milošević, Statics and dynamics of skyrmions interacting with disorder and nanostructures. Rev. Mod. Phys. 94, 035005 (2022). https://doi.org/10.1103/RevModPhys.94.035005

    Article  MathSciNet  ADS  Google Scholar 

  27. E.H. Hall, On a new action of the magnet on electric currents. Am. J. Math. 2, 287–292 (1879). https://doi.org/10.2307/2369245

    Article  MathSciNet  Google Scholar 

  28. C. Reichhardt, D. Ray, C.J.O. Reichhardt, Collective transport properties of driven skyrmions with random disorder. Phys. Rev. Lett. 114, 217202 (2015). https://doi.org/10.1103/PhysRevLett.114.217202

    Article  ADS  Google Scholar 

  29. X. Lou, Q. Yang, Y. Ding, P. Liu, K. Chen, X. Zhou, F. Ye, R. Podgornik, M. Yang, Odd viscosity-induced Hall-like transport of an active chiral fluid. Proc. Natl. Acad. Sci. (USA) 119, 2201279119 (2022). https://doi.org/10.1073/pnas.2201279119

    Article  MathSciNet  Google Scholar 

  30. W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M.B. Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Hoffmann, S.G.E. te Velthuis, Direct observation of the skyrmion Hall effect. Nat. Phys. 13(2), 162–169 (2017). https://doi.org/10.1038/NPHYS3883

  31. K. Litzius, I. Lemesh, B. Krüger, P. Bassirian, L. Caretta, K. Richter, F. Büttner, K. Sato, O.A. Tretiakov, J. Förster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schütz, G.S.D. Beach, M. Kläui, Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13(2), 170–175 (2017). https://doi.org/10.1038/NPHYS4000

    Article  Google Scholar 

  32. F. Kümmel, B. ten Hagen, R. Wittkowski, I. Buttinoni, R. Eichhorn, G. Volpe, H. Löwen, C. Bechinger, Circular motion of asymmetric self-propelling particles. Phys. Rev. Lett. 110, 198302 (2013). https://doi.org/10.1103/PhysRevLett.110.198302

  33. L. Lemelle, J.-F. Palierne, E. Chatre, C. Place, Counterclockwise circular motion of bacteria swimming at the air-liquid interface. J. Bacteriol. 192, 6307–6308 (2010). https://doi.org/10.1128/JB.00397-10

    Article  Google Scholar 

  34. A. Nourhani, V.H. Crespi, P.E. Lammert, Guiding chiral self-propellers in a periodic potential. Phys. Rev. Lett. 115, 118101 (2015). https://doi.org/10.1103/PhysRevLett.115.118101

    Article  ADS  Google Scholar 

  35. H. Löwen, Chirality in microswimmer motion: from circle swimmers to active turbulence. Eur. Phys. J. Spec. Top. 225(11–12), 2319–2331 (2016). https://doi.org/10.1140/epjst/e2016-60054-6

    Article  Google Scholar 

  36. M. Han, J. Yan, S. Granick, E. Luijten, Effective temperature concept evaluated in an active colloid mixture. Proc. Natl. Acad. Sci. (USA) 114, 7513–7518 (2017). https://doi.org/10.1073/pnas.1706702114

    Article  ADS  Google Scholar 

  37. B. Liebchen, D. Levis, Chiral active matter. EPL 139, 67001 (2022). https://doi.org/10.1209/0295-5075/ac8f69

    Article  ADS  Google Scholar 

  38. B.C. van Zuiden, J. Paulose, W.T.M. Irvine, D. Bartolo, V. Vitelli, Spatiotemporal order and emergent edge currents in active spinner materials. Proc. Natl. Acad. Sci. (USA) 113(46), 12919–12924 (2016). https://doi.org/10.1073/pnas.1609572113

  39. D. Banerjee, A. Souslov, A.G. Abanov, V. Vitelli, Odd viscosity in chiral active fluids. Nat. Commun. 8, 1573 (2017). https://doi.org/10.1038/s41467-017-01378-7

    Article  ADS  Google Scholar 

  40. K. Dasbiswas, K.K. Mandadapu, S. Vaikuntanathan, Topological localization in out-of-equilibrium dissipative systems. Proc. Natl. Acad. Sci. (USA) 115(39), 9031–9040 (2018). https://doi.org/10.1073/pnas.1721096115

    Article  MathSciNet  ADS  Google Scholar 

  41. V. Soni, E.S. Bililign, S. Magkiriadou, S. Sacanna, D. Bartolo, M.J. Shelley, W.T.M. Irvine, The odd free surface flows of a colloidal chiral fluid. Nat. Phys. 15, 1188 (2019). https://doi.org/10.1038/s41567-019-0603-8

    Article  Google Scholar 

  42. C. Reichhardt, C.J.O. Reichhardt, Reversibility, pattern formation, and edge transport in active chiral and passive disk mixtures. J. Chem. Phys. 150(6), 064905 (2019). https://doi.org/10.1063/1.5085209

    Article  ADS  Google Scholar 

  43. X. Yang, C. Ren, K. Cheng, H.P. Zhang, Robust boundary flow in chiral active fluid. Phys. Rev. E 101, 022603 (2020). https://doi.org/10.1103/PhysRevE.101.022603

    Article  ADS  Google Scholar 

  44. M. Han, M. Fruchart, C. Scheibner, S. Vaikuntanathan, J.J. de Pablo, V. Vitelli, Fluctuating hydrodynamics of chiral active fluids. Nat. Phys. 17, 1260–1269 (2021). https://doi.org/10.1038/s41567-021-01360-7

  45. M. Fruchart, C. Scheibner, V. Vitelli, Odd viscosity and odd elasticity. Ann. Rev. Condens. Matter. Phys. 14, 471–510 (2023). https://doi.org/10.1146/annurev-conmatphys-040821-125506

    Article  ADS  Google Scholar 

  46. A.P. Petroff, C. Whittington, A. Kudrolli, Density-mediated spin correlations drive edge-to-bulk flow transition in active chiral matter. Phys. Rev. E 108, 014609 (2023). https://doi.org/10.1103/PhysRevE.108.014609

    Article  ADS  Google Scholar 

  47. E. Kalz, H.D. Vuijk, I. Abdoli, J.-U. Sommer, H. Löwen, A. Sharma, Collisions enhance self-diffusion in odd-diffusive systems. Phys. Rev. Lett. 129, 090601 (2022). https://doi.org/10.1103/PhysRevLett.129.090601

    Article  MathSciNet  ADS  Google Scholar 

  48. X. Cao, D. Das, N. Windbacher, F. Ginot, M. Krüger, C. Bechinger, Memory-induced Magnus effect. Nat. Phys. (2023). https://doi.org/10.1038/s41567-023-02213-1

    Article  Google Scholar 

  49. C. Reichhardt, C.J.O. Reichhardt, Active microrheology, Hall effect, and jamming in chiral fluids. Phys. Rev. E 100, 012604 (2019). https://doi.org/10.1103/PhysRevE.100.012604

    Article  ADS  Google Scholar 

  50. C.J.O. Reichhardt, C. Reichhardt, Active rheology in odd-viscosity systems. EPL 137, 66004 (2022). https://doi.org/10.1209/0295-5075/ac2adc

    Article  ADS  Google Scholar 

  51. A.R. Poggioli, D.T. Limmer, Odd mobility of a passive tracer in a chiral active fluid. Phys. Rev. Lett. 130, 158201 (2023). https://doi.org/10.1103/PhysRevLett.130.158201

    Article  MathSciNet  ADS  Google Scholar 

  52. N.H.P. Nguyen, D. Klotsa, M. Engel, S.C. Glotzer, Emergent collective phenomena in a mixture of hard shapes through active rotation. Phys. Rev. Lett. 112, 075701 (2014). https://doi.org/10.1103/PhysRevLett.112.075701

    Article  ADS  Google Scholar 

  53. A. Aubret, M. Youssef, S. Sacanna, J. Palacci, Targeted assembly and synchronization of self-spinning microgears. Nat. Phys. 14(11), 1114–1118 (2018). https://doi.org/10.1038/s41567-018-0227-4

    Article  Google Scholar 

  54. T.H. Tan, A. Mietke, J. Li, Y. Chen, H. Higinbotham, P.J. Foster, S. Gokhale, J. Dunkel, N. Fakhri, Odd dynamics of living chiral crystals. Nature 607, 287–293 (2022). https://doi.org/10.1038/s41586-022-04889-6

    Article  ADS  Google Scholar 

  55. W.R. DiLuzio, L. Turner, M. Mayer, P. Garstecki, D.B. Weibel, H.C. Berg, G.M. Whitesides, Escherichia coli swim on the right-hand side. Nature (London) 435(7046), 1271–1274 (2005). https://doi.org/10.1038/nature03660

  56. H. Wioland, F.G. Woodhouse, J. Dunkel, R.E. Goldstein, Ferromagnetic and antiferromagnetic order in bacterial vortex lattices. Nat. Phys. 12(4), 341 (2016). https://doi.org/10.1038/NPHYS3607

    Article  Google Scholar 

  57. H. Reinken, D. Nishiguchi, S. Heidenreich, A. Sokolov, M. Bär, S.H.L. Klapp, I.S. Aranson, Organizing bacterial vortex lattices by periodic obstacle arrays. Commun. Phys. 3, 76 (2020). https://doi.org/10.1038/s42005-020-0337-z

    Article  Google Scholar 

  58. M. Tarama, T. Ohta, Dynamics of a deformable self-propelled particle with internal rotational force. Prog. Theor. Exp. Phys. 2013, 013–01 (2013). https://doi.org/10.1093/ptep/pts051

    Article  Google Scholar 

  59. M. Tarama, A.M. Menzel, B. ten Hagen, R. Wittkowski, T. Ohta, H. Löwen, Dynamics of a deformable active particle under shear flow. J. Chem. Phys. 139, 104906 (2013). https://doi.org/10.1063/1.4820416

  60. S. Luding, H.J. Herrmann, Cluster-growth in freely cooling granular media. Chaos 9(3), 673–681 (1999). https://doi.org/10.1063/1.166441

    Article  ADS  Google Scholar 

  61. C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016). https://doi.org/10.1103/RevModPhys.88.045006

    Article  MathSciNet  ADS  Google Scholar 

  62. C. Reichhardt, C.J.O. Reichhardt, Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review. Rep. Prog. Phys. 80(2), 026501 (2017). https://doi.org/10.1088/1361-6633/80/2/026501

  63. I.L. Fernandes, J. Chico, S. Lounis, Impurity-dependent gyrotropic motion, deflection and pinning of current-driven ultrasmall skyrmions in PdFe/Ir(111) surface. J. Phys. Condens. Matter. 32, 425802 (2020). https://doi.org/10.1088/1361-648X/ab9cf0

    Article  ADS  Google Scholar 

  64. W. Chen, L. Liu, Y. Ji, Y. Zheng, Skyrmion ratchet effect driven by a biharmonic force. Phys. Rev. B 99, 064431 (2019). https://doi.org/10.1103/PhysRevB.99.064431

    Article  ADS  Google Scholar 

  65. N. Ser, V. Lohani, Skyrmion jellyfish in driven chiral magnets. SciPost Phys. 15, 065 (2023). https://doi.org/10.21468/SciPostPhys.15.2.065

    Article  MathSciNet  ADS  Google Scholar 

  66. A. Libál, T. Balázs, C. Reichhardt, C.J.O. Reichhardt, Colloidal dynamics on a choreographic time crystal. Phys. Rev. Lett. 124, 208004 (2020). https://doi.org/10.1103/PhysRevLett.124.208004

    Article  ADS  Google Scholar 

  67. F.A. Lavergne, H. Wendehenne, T. Bäuerle, C. Bechinger, Group formation and cohesion of active particles with visual perception-dependent motility. Science 364(6435), 70 (2019). https://doi.org/10.1126/science.aau5347

  68. K. Sone, Y. Ashida, Anomalous topological active matter. Phys. Rev. Lett. 123, 205502 (2019). https://doi.org/10.1103/PhysRevLett.123.205502

    Article  ADS  Google Scholar 

  69. G. Volpe, C. Bechinger, F. Cichos, R. Golestanian, H. Löwen, M. Sperl, G. Volpe, Active matter in space. npj Microgravity 8, 54 (2022). https://doi.org/10.1038/s41526-022-02230-7

    Article  ADS  Google Scholar 

  70. M. te Vrugt, T. Frohoff-Hülsmann, E. Heifetz, U. Thiele, R. Wittkowski, From a microscopic inertial active matter model to the Schrödinger equation. Nat. Commun. 14, 1302 (2023). https://doi.org/10.1038/s41467-022-35635-1

  71. V. Nosenko, Two-dimensional complex (dusty) plasma with active Janus particles. Phys. Plasmas 29, 123701 (2022). https://doi.org/10.1063/5.0121734

    Article  ADS  Google Scholar 

  72. G. Gauthier, M.T. Reeves, X. Yu, A.S. Bradley, M.A. Baker, T.A. Bell, H. Rubinsztein-Dunlop, M.J. Davis, T.W. Neely, Giant vortex clusters in a two-dimensional quantum fluid. Science 364(6447), 1264 (2019). https://doi.org/10.1126/science.aat5718

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the US Department of Energy through the LANL/LDRD program for this work. This work was supported by the US Department of Energy through the Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy (Contract No. 892333218NCA000001). AL was supported by a grant of the Romanian Ministry of Education and Research, CNCS - UEFISCDI, project number PN-III-P4-ID-PCE-2020-1301, within PNCDI III.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to C. J. O. Reichhardt.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adorjáni, B., Libál, A., Reichhardt, C. et al. Phase separation, edge currents, and Hall effect for active matter with Magnus dynamics. Eur. Phys. J. E 47, 40 (2024). https://doi.org/10.1140/epje/s10189-024-00431-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-024-00431-w