Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Sampled-data control with actuator saturated exponential synchronization semi-Markovian jump neural networks subject to input-to-state stability approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, we propose an advanced methodology for analyzing the exponential synchronization of semi-Markovian jump neural networks (SMJNNs) subjected to time-varying delay and controlled by a sampled-data controller. The analysis is based on a Wirtinger-based integral inequality (Li in Nonlinear Analysis Hybrid Systems 41:101028, 2021) and modified free matrix-based integral inequality (MFMBII) (Zeng in SN Applied Sciences 5:301, 2023), which provide a powerful framework for investigating complex dynamical systems. First, we establish a MFMBII, incorporating the dynamics of the SMJNNs and the time-varying delay. This inequality allows us to derive sufficient conditions for the exponential synchronization of the network systems. Then we proceed to derive two sufficient conditions that pertain to the design of the sampled-data controller. These conditions ensure the mean square input-to-state stability (ISS) for the hybrid closed-loop system. To achieve this, we employ the Lyapunov–Krasovskii functional (LKF) and the MFMBII approach. Lastly, the proposed input-to-state stabilization method is demonstrated numerically by using a numerical example that is used to verify its validity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no data-sets were generated or analyzed during the current study.

References

  1. K. Udhayakumar, S. Shanmugasundaram, A. Kashkynbayev, K. Janani, R. Rakkiyappan, Saturated and asymmetric saturated impulsive control synchronization of coupled delayed inertial neural networks with time-varying delays. Appl. Math. Modell. 113, 528–544 (2023)

    Article  MathSciNet  Google Scholar 

  2. Y. Cui, P. Cheng, Exponential synchronization of stochastic time-delayed memristor-based neural networks via pinning impulsive control. Int. J. Control Autom. Syst. 22, 1–10 (2024)

    Article  Google Scholar 

  3. Y. Sheng, H. Gong, Z. Zeng, Global synchronization of complex-valued neural networks with unbounded time-varying delays. Neural Netw. 162, 309–317 (2023)

    Article  Google Scholar 

  4. B. Adhira, G. Nagamani, D. Dafik, Non-fragile extended dissipative synchronization control of delayed uncertain discrete-time neural networks. Commun. Nonlinear Sci. Numer. Simul. 116, 106820 (2023)

    Article  MathSciNet  Google Scholar 

  5. C. Ge, C. Chang, Y. Liu, C. Hua, Dynamic event-triggered exponential synchronization for neural networks with random controller gain perturbations. Int. J. Control Autom. Syst. 21, 2927–2937 (2023)

    Article  Google Scholar 

  6. J. Fang, N. Yin, D. Wei, H. Liu, W. Deng, Improved finite-time synchronization of coupled discontinuous neural networks under adaptive sliding mode control. Int. J. Dyn. Control 12, 396–408 (2024)

    Article  MathSciNet  Google Scholar 

  7. A. Kumar, S. Das, V.K. Rajeev Yadav, Global exponential synchronization of complex-valued recurrent neural networks in presence of uncertainty along with time-varying bounded and unbounded delay terms. Int. J. Dyn. Control 10, 902–916 (2022)

    Article  MathSciNet  Google Scholar 

  8. X. Wang, Y. Ma, Adaptive non-fragile sliding mode control for switched semi-Markov jump system with time-delay and attack via reduced-order method. Appl. Math. Comput. 440, 127670 (2023)

    MathSciNet  Google Scholar 

  9. Z. Zhang, H. Shen, L. Su, \( H_{\infty }\)/Passive synchronization of semi-Markov jump neural networks subject to hybrid attacks via an activation function division approach. J. Syst. Sci. Complex. 37, 1023–1036 (2024)

    Article  MathSciNet  Google Scholar 

  10. L. Han, Y. Ma, Learning-based asynchronous sliding mode control for semi-Markov jump systems with time-varying delay using relaxed negative-determination lemma. Chaos Solitons Fractals 179, 114454 (2024)

    Article  MathSciNet  Google Scholar 

  11. N. Aravinth, R. Sakthivel, A. Mohammadzadeh, S. Saat, Stabilization of delayed semi-Markov jump neural networks with actuator faults: a quantized hybrid control approach. Nonlinear Anal. Hybrid Syst. 54, 101509 (2024)

    Article  MathSciNet  Google Scholar 

  12. D. Cao, Y. Jin, W. Qi, Synchronization for stochastic semi-Markov jump neural networks with dynamic event-triggered scheme. J. Franklin Inst. 360, 12620–12639 (2023)

    Article  MathSciNet  Google Scholar 

  13. C. Ge, C. Chang, Y. Liu, C. Liu, Sampled-data-based exponential synchronization of switched coupled neural networks with unbounded delay. Commun. Nonlinear Sci. Numer. Simul. 117, 106931 (2023)

    Article  MathSciNet  Google Scholar 

  14. X.Z. Pan, J.J. Huang, S.M. Lee, A novel convex relaxation technique on affine transformed sampled-data control issue for fuzzy semi-Markov jump systems. Appl. Math. Comput. 451, 128026 (2023)

    MathSciNet  Google Scholar 

  15. T. Yang, Z. Wang, J. Xia, H. Shen, Sampled-data exponential synchronization of stochastic chaotic Lur’e delayed systems. Math. Comput. Simul. 203, 44–57 (2023)

    Article  MathSciNet  Google Scholar 

  16. M. Huan, C. Li, Synchronization of reaction diffusion neural networks with sampled-data control via a new two-sided looped-functional. Chaos Solitons Fractals 167, 113059 (2023)

    Article  MathSciNet  Google Scholar 

  17. H. Wang, Y. Ni, J. Wang, J. Tian, C. Ge, Sampled-data control for synchronization of Markovian jumping neural networks with packet dropout. Appl. Intell. 53, 8898–8909 (2023)

    Article  Google Scholar 

  18. C.K. Ahn, Input-to-state stable nonlinear filtering for a class of continuous-time delayed nonlinear systems. Int. J. Control 86, 1179–1185 (2013)

    Article  MathSciNet  Google Scholar 

  19. Z. Zhang, Z. Yan, J. Zhou, Y. Chen, Adaptive input-to-state stable synchronization for uncertain time-delay Lur’e systems. Commun. Theor. Phys. 73, 1–10 (2021)

    Article  MathSciNet  Google Scholar 

  20. L. He, W. Wu, G. Yao, J. Zhou, Input-to-state stabilization of delayed semi-Markovian jump neural networks via sampled-data control. Neural Process. Lett. 55, 3245–3266 (2023)

    Article  Google Scholar 

  21. L. He, W. Wu, J. Zhou, G. Yao, Input-to-state stable synchronization for delayed Lurie systems via sampled-data control. Discrete Contin. Dyn. Syst. B 28, 1553–1570 (2023)

    Article  MathSciNet  Google Scholar 

  22. X. Li, S.K. Nguang, K. She, J. Cheng, K. Shi, S. Zhong, Stochastic exponential synchronization for delayed neural networks with semi-Markovian switchings: saturated heterogeneous sampling communication. Nonlinear Anal. Hybrid Syst. 41, 101028 (2021)

    Article  MathSciNet  Google Scholar 

  23. Y. Zhang, Y. He, F. Long, Augmented two-side-looped Lyapunov functional for sampled-data-based synchronization of chaotic neural networks with actuator saturation. Neurocomputing 422, 287–294 (2021)

    Article  Google Scholar 

  24. Q. Zeng, M. Jiang, J. Hu, Free-matrix-based integral inequalities for sampled-data synchronization control of delayed complex networks. SN Appl. Sci. 5, 301 (2023)

    Article  Google Scholar 

  25. N. Gunasekaran, G. Zhai, Q. Yu, Sampled-data synchronization of delayed multi-agent networks and its application to coupled circuit. Neurocomputing 413, 499–511 (2020)

    Article  Google Scholar 

  26. J. Zhou, Y. Liu, J. Xia, Z. Wang, S. Arik, Resilient fault-tolerant anti-synchronization for stochastic delayed reaction-diffusion neural networks with semi-Markov jump parameters. Neural Netw. 125, 194–204 (2020)

    Article  Google Scholar 

  27. L. Zhang, S.K. Nguang, D. Ouyang, S. Yan, Synchronization of delayed neural networks via integral-based event-triggered scheme. IEEE Trans. Neural Netw. Learn. Syst. 31, 5092–5102 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Prakash, P. Balasubramaniam, S. Lakshmanan, Synchronization of Markovian jumping inertial neural networks and its applications in image encryption. Neural Netw. 83, 86–93 (2016)

    Article  Google Scholar 

Download references

Funding

There are no funders to report for this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chandrasekar.

Ethics declarations

Conflict of interest

This work does not have any Conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S.S., Chandrasekar, A. Sampled-data control with actuator saturated exponential synchronization semi-Markovian jump neural networks subject to input-to-state stability approach. Eur. Phys. J. Plus 139, 683 (2024). https://doi.org/10.1140/epjp/s13360-024-05470-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05470-y