Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Tuning surface texture of electrospun polycaprolactone fibers: Effects of solvent systems and relative humidity

  • Organic and Hybrid Functional Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, the surface morphology of electrospun polycaprolactone (PCL) fibers was investigated. PCL was dissolved in various solvent/nonsolvent systems (acetone/dimethylformamide (DMF), tetrahydrofuran (THF)/DMF, dichloromethane (DCM)/DMF, chloroform (CF)/DMF, acetone/dimethyl sulfoxide (DMSO), THF/DMSO, DCM/DMSO, CF/DMSO) at a fixed ratio of 80/20 v/v. PCL solutions from these solvent systems were electrospun under varying high relative humidity (60–90%), and also room humidity. Characterization of fibers was evaluated by a scanning electron microscope, an atomic force microscope, water contact angle measurements, the Brunauer–Emmett–Teller method, and a strain–stress test. Results revealed that the surface texture of individual fibers changed with the presence of different types of pores and surface roughness depending on both humidity and solvent/nonsolvent properties. Miscibility with water was another factor to be taken into account for understanding mechanisms that contributed to the formation of surface defects. Fibrous materials having such a surface architecture, especially the porous ones, are potential candidates for various applications such as tissue engineering, drug delivery, catalysis, and filtration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Z-M. Huang, Y.Z. Zhang, M. Kotaki, and S. Ramakrishna: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223 (2003).

    Article  CAS  Google Scholar 

  2. S.Y. Chew, Y. Wen, Y. Dzenis, and K.W. Leong: The role of electrospinning in the emerging field of nanomedicine. Curr. Pharm. Des. 12, 4751 (2006).

    Article  CAS  Google Scholar 

  3. S.G. Kumbar, R. James, S.P. Nukavarapu, and C.T. Laurencin: Electrospun nanofiber scaffolds: Engineering soft tissues. Biomed. Mater. 3, 034002 (2008).

    Article  CAS  Google Scholar 

  4. T.J. Sill and H.A. von Recum: Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29, 1989 (2008).

    Article  CAS  Google Scholar 

  5. B. Azimi, P. Nourpanah, M. Rabiee, and S. Arbab: Poly(ε-caprolactone) fiber: An overview. J. Eng. Fibers Fabr. 9, 155892501400900309 (2014).

    Google Scholar 

  6. J. Zhang, T. Zheng, E. Alarçin, B. Byambaa, X. Guan, J. Ding, Y.S. Zhang, and Z. Li: Porous electrospun fibers with self-sealing functionality: An enabling strategy for trapping. Biomacromolecules 13, 1701949 (2017).

    Google Scholar 

  7. K.A.G. Katsogiannis, G.T. Vladisavljević, and S. Georgiadou: Porous electrospun polycaprolactone (PCL) fibres by phase separation. Eur. Polym. J. 69, 284 (2015).

    Article  CAS  Google Scholar 

  8. A. Senthamizhan, B. Balusamy, A. Celebioglu, and T. Uyar: “Nanotraps” in porous electrospun fibers for effective removal of lead(II) in water. J. Mater. Chem. A 4, 2484 (2016).

    Article  CAS  Google Scholar 

  9. A. Soundararajan, J. Muralidhar R., R. Dhandapani, J. Radhakrishnan, A. Manigandan, S. Kalyanasundaram, S. Sethuraman, and A. Subramanian: Surface topography of polylactic acid nanofibrous mats: Influence on blood compatibility. J. Mater. Sci.: Mater. Med. 29, 145 (2018).

    Google Scholar 

  10. Y. Wang, J. Deng, R. Fan, A. Tong, X. Zhang, L. Zhou, Y. Zheng, J. Xu, and G. Guo: Novel nanoscale topography on poly(propylene carbonate)/poly(ε-caprolactone) electrospun nanofibers modifies osteogenic capacity of ADCs. RSC Adv. 5, 82834 (2015).

    Article  CAS  Google Scholar 

  11. Y. Hu, S.R. Winn, I. Krajbich, and J.O. Hollinger: Porous polymer scaffolds surface-modified with arginine–glycine–aspartic acid enhance bone cell attachment and differentiation in vitro. J. Biomed. Mater. Res., Part A 64, 583 (2003).

    Article  Google Scholar 

  12. L. Moroni, R. Licht, J. de Boer, J.R. de Wijn, and C.A. van Blitterswijk: Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds. Biomaterials 27, 4911 (2006).

    Article  CAS  Google Scholar 

  13. G-M. Kim, R. Lach, G.H. Michler, and Y-W. Chang: The mechanical deformation process of electrospun polymer nanocomposite fibers. Macromol. Rapid Commun. 26, 728 (2005).

    Article  CAS  Google Scholar 

  14. C.L. Casper, J.S. Stephens, N.G. Tassi, D.B. Chase, and J.F. Rabolt: Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process. Macromolecules 37, 573 (2004).

    Article  CAS  Google Scholar 

  15. Y. Li, C.T. Lim, and M. Kotaki: Study on structural and mechanical properties of porous PLA nanofibers electrospun by channel-based electrospinning system. Polymer 56, 572 (2015).

    Article  CAS  Google Scholar 

  16. K.A.G. Katsogiannis, G.T. Vladisavljević, and S. Georgiadou: Porous electrospun polycaprolactone fibers: Effect of process parameters. J. Polym. Sci., Part B: Polym. Phys. 54, 1878 (2016).

    Article  CAS  Google Scholar 

  17. L. Zhang and Y-L. Hsieh: Nanoporous ultrahigh specific surface polyacrylonitrile fibres. Nanotechnology 17, 4416 (2006).

    Article  CAS  Google Scholar 

  18. H.R. Pant, M.P. Neupane, B. Pant, G. Panthi, H-J. Oh, M.H. Lee, and H.Y. Kim: Fabrication of highly porous poly(ε-caprolactone) fibers for novel tissue scaffold via water-bath electrospinning. Colloids Surf., B 88, 587 (2011).

    Article  CAS  Google Scholar 

  19. M. Srinivasarao, D. Collings, A. Philips, and S. Patel: Three-dimensionally ordered array of air bubbles in a polymer film. Science 292, 79 (2001).

    Article  CAS  Google Scholar 

  20. T.H. Nguyen, T.Q. Bao, I. Park, and B.T. Lee: A novel fibrous scaffold composed of electrospun porous poly(ε-caprolactone) fibers for bone tissue engineering. J. Biomater. Appl. 28, 514 (2013).

    Article  CAS  Google Scholar 

  21. E.S. Medeiros, L.H.C. Mattoso, R.D. Offeman, D.F. Wood, and W.J. Orts: Effect of relative humidity on the morphology of electrospun polymer fibers. Can. J. Chem. 86, 590 (2008).

    Article  Google Scholar 

  22. G. Yazgan, R.I. Dmitriev, V. Tyagi, J. Jenkins, G-M. Rotaru, M. Rottmar, R.M. Rossi, C. Toncelli, D.B. Papkovsky, K. Maniura-Weber, and G. Fortunato: Steering surface topographies of electrospun fibers: Understanding the mechanisms. Sci. Rep. 7, 158 (2017).

    Article  Google Scholar 

  23. D. Lubasova and L. Martinova: Controlled morphology of porous polyvinyl butyral nanofibers. Journal of Nanomaterials 2011, 6 (2011).

    Article  Google Scholar 

  24. Z. Qi, H. Yu, Y. Chen, and M. Zhu: Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly(l-lactic acid). Mater. Lett. 63, 415 (2009).

    Article  CAS  Google Scholar 

  25. A. Luwang Laiva, J.R. Venugopal, S. Sridhar, B. Rangarajan, B. Navaneethan, and S. Ramakrishna: Novel and simple methodology to fabricate porous and buckled fibrous structures for biomedical applications. Polymer 55, 5837 (2014).

    Article  CAS  Google Scholar 

  26. J.T. Jung, J.F. Kim, H.H. Wang, E. di Nicolo, E. Drioli, and Y.M. Lee: Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). J. Membr. Sci. 514, 250 (2016).

    Article  CAS  Google Scholar 

  27. P-Y. Chen and S-H. Tung: One-step electrospinning to produce nonsolvent-induced macroporous fibers with ultrahigh oil adsorption capability. Macromolecules 50, 2528 (2017).

    Article  CAS  Google Scholar 

  28. E. Bormashenko: Breath-figure self-assembly, a versatile method of manufacturing membranes and porous structures: Physical, chemical and technological aspects. Membranes 7, 45 (2017).

    Article  Google Scholar 

  29. R.M. Nezarati, M.B. Eifert, and E. Cosgriff-Hernandez: Effects of humidity and solution viscosity on electrospun fiber morphology. Tissue Eng., Part C 19, 810 (2013).

    Article  CAS  Google Scholar 

  30. S. Megelski, J.S. Stephens, D.B. Chase, and J.F. Rabolt: Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35, 8456 (2002).

    Article  CAS  Google Scholar 

  31. N. Ucar, N. Kizildag, A. Onen, I. Karacan, and O.J.F. Eren: Polymers: Polyacrylonitrile-polyaniline composite nanofiber webs: Effects of solvents, redoping process and dispersion technique. Fibers Polym. 16, 2223 (2015).

    Article  CAS  Google Scholar 

  32. P. Lu and Y. Xia: Maneuvering the internal porosity and surface morphology of electrospun polystyrene yarns by controlling the solvent and relative humidity. Langmuir 29, 7070 (2013).

    Article  CAS  Google Scholar 

  33. J. Lin, B. Ding, J. Yu, and Y. Hsieh: Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl. Mater. Interfaces 2, 521 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by İnönü University Scientific Researches Project unit under the project number of FBA-2018-1332. I would like to thank Professor Menemşe GÜMÜŞDERELİOĞLU, Ph.D. researcher Zeynep ALTINIŞIK, and Assistant Professor Cem BAYRAM for their valuable supports in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Şimşek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şimşek, M. Tuning surface texture of electrospun polycaprolactone fibers: Effects of solvent systems and relative humidity. Journal of Materials Research 35, 332–342 (2020). https://doi.org/10.1557/jmr.2020.20

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.20