Abstract
The relationships among the ratio of indentation hardness HIT over reduced elastic modulus Er, the ratio of elastic work We over total work Wt, and the ratio of permanent depth hp over the maximum indentation displacement hmax were investigated by instrumented indentation of 25 different materials under Berkovich indenter and various maximum indentation loads. Proportional relationships are found among various indentation variables (e.g. We vs. Wt, HIT vs. Er, and hp vs. hmax). Quadratic polynomial can be used to express the dependence of HIT/Er on We/Wt (or hp/hmax), based on which indentation hardness and reduced elastic modulus can be determined by work-based (or displacement-based) approach without requiring area function of the indenter. HIT and Er obtained by work-based and displacement-based approaches are consistent with those obtained by Oliver and Pharr’s method and those reported in literature.
Graphical abstract
Similar content being viewed by others
Data availability
The raw/processed data required to reproduce these findings are available from the corresponding author M.L. on request (mingliu@fzu.edu.cn or mingliuUK@gmail.com).
References
A. Qiao, T. To, M. Stepniewska, H. Tao, L. Calvez, X. Zhang, M.M. Smedskjaer, Y. Yue, Deformation mechanism of a metal–organic framework glass under indentation. Phys. Chem. Chem. Phys. 23(31), 16923 (2021)
H. Liu, C. Xu, C. Liu, G. He, T. Yu, Y. Li, Probing the indentation induced nanoscale damage of rhenium. Mater. Des. 186, 108362 (2020)
R. Yang, T. Zhang, Y. Feng, Theoretical analysis of the relationships between hardness, elastic modulus, and the work of indentation for work-hardening materials. J. Mater. Res. 25(11), 2072 (2011)
W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992)
J.L. Hempel, M.D. Wells, S. Parkin, Y.T. Cheng, A.J. Huckaba, Unveiling the brittleness of hybrid organic-inorganic 0-D histammonium zinc chlorometallate by nanoindentation. Appl. Phys. Lett. 119(24) (2021).
X. Ding, H. Geng, M. Zhao, Z. Chen, J. Li, Synergistic bond properties of different deformed steel fibers embedded in mortars wet-sieved from self-compacting SFRC. Appl. Sci. Basel 11(21) (2021).
Y. Shelef, B. Bar-On, Interfacial indentations in biological composites. J. Mech. Behav. Biomed. Mater. 114 (2021).
Y. Hwang, K.P. Marimuthu, N. Kim, C. Lee, H. Lee, Extracting plastic properties from in-plane displacement data of spherical indentation. Int. J. Mech. Sci. 197 (2021).
D.Y. Dang, Y.K. Wang, Y.T. Cheng, Communication-fracture behavior of single LiNi0.33Mn0.33Co0.33O2 particles studied by flat punch indentation. J. Electrochem. Soc. 166(13), A2749 (2019).
J.L. Hempel, A. Meyer, R. Hill, Y.T. Cheng, Validating a facile approach to measuring fracture toughness by instrumented indentation without imaging crack-lengths. MRS Commun. 12(2), 279 (2022)
A. Priyadarshi, M. Khavari, T. Subroto, M. Conte, P. Prentice, K. Pericleous, D. Eskin, J. Durodola, I. Tzanakis, On the governing fragmentation mechanism of primary intermetallics by induced cavitation. Ultrason. Sonochem. 70 (2021).
H. Algamaiah, D.C. Watts, Post-irradiation surface viscoelastic integrity of photo-polymerized resin-based composites. Dent. Mater. 37(12), 1828 (2021)
A. Meghwal, A. Anupam, V. Luzin, C. Schulz, C. Hall, B. Murty, R.S. Kottada, C.C. Berndt, A.S.M. Ang, Multiscale mechanical performance and corrosion behaviour of plasma sprayed AlCoCrFeNi high-entropy alloy coatings. J. Alloys Compd. 854, 157140 (2021)
P. Sengupta, S.S. Sahoo, A. Bhattacharjee, S. Basu, I. Manna, Effect of TiC addition on structure and properties of spark plasma sintered ZrB2–SiC–TiC ultrahigh temperature ceramic composite. J. Alloys Compd. 850, 156668 (2021)
M. Petretta, A. Gambardella, M. Boi, M. Berni, C. Cavallo, G. Marchiori, M.C. Maltarello, D. Bellucci, M. Fini, N. Baldini, Composite scaffolds for bone tissue regeneration based on PCL and Mg-containing bioactive glasses. Biology 10(5), 398 (2021)
R. Akhter, Z. Zhou, Z. Xie, P. Munroe, TiN versus TiSiN coatings in indentation, scratch and wear setting. Appl. Surf. Sci. 563, 150356 (2021)
D. Yao, J. Fu, F. Li, Measurement of quasi-static and dynamic mechanical properties of soft materials based on instrumented indentation using a piezoelectric cantilever. Polym. Test. 96, 107056 (2021)
S.N. Jayanthi, Analysis of micro indentation hardness of thiourea added L-histidine crystals (TLH). Mater. Today 44, 2273 (2021)
J. Tang, M. Cheng, G.G. Huang, H. Shu, H.T. Xu, Using indentation test to evaluate the properties of metallic material with strain aging, in Applied Mechanics and Materials, vol. 751 (Trans Tech Publ, Bäch, 2015), p.131
L.G. Wang, J.-F. Chen, J.Y. Ooi, A breakage model for particulate solids under impact loading. Powder Technol. 394, 669 (2021)
M. Pawlikowski, K. Jankowski, K. Skalski, New microscale constitutive model of human trabecular bone based on depth sensing indentation technique. J. Mech. Behav. Biomed. Mater. 85, 162 (2018)
K. Azzez, M. Chaabane, M.-A. Abellan, J.-M. Bergheau, H. Zahouani, A. Dogui, Relevance of indentation test to characterize soft biological tissue: application to human skin. Int. J. Appl. Mech. 10(07), 1850074 (2018)
Y. Liu, W. Wang, Z. Zhao, H. Zhang, The effect of meso-structure and surface topography on the indentation variability of viscoelastic composite materials. Compos. Struct. 220, 81 (2019)
I. Manika, J. Maniks, Effect of substrate hardness and film structure on indentation depth criteria for film hardness testing. J. Phys. D 41(7), 074010 (2008)
Z. Wang, J. Wang, W. Wang, Y. Niu, C. Li, X. Zong, J. Zhang, H. Zhao, Scaling relationships of elastic-perfectly plastic film/coating materials from small scale sharp indentation. Sci. China Technol. Sci. 64(6), 1302 (2021)
O. Alizadeh, G.T. Eshlaghi, S. Mohammadi, Nanoindentation simulation of coated aluminum thin film using quasicontinuum method. Comput. Mater. Sci. 111, 12 (2016)
L. Ma, X. Wang, J. Wang, J. Zhang, C. Yin, L. Fan, D. Zhang, Graphene oxide–cerium oxide hybrids for enhancement of mechanical properties and corrosion resistance of epoxy coatings. J. Mater. Sci. 56(16), 10108 (2021)
L. Charleux, S. Gravier, M. Verdier, M. Fivel, J. Blandin, Amorphous and partially crystallized metallic glasses: an indentation study. Mater. Sci. Eng. A 483, 652 (2008)
J. Alkorta, J.M. Martínez–Esnaola, J.G. Sevillano, J. Malzbender, Comments on “Comment on the determination of mechanical properties from the energy dissipated during indentation” by J. Malzbender [J. Mater. Res. 20, 1090 (2005)]. J. Mater. Res. 21(1), 302 (2006).
J. Malzbender, Energy dissipated during spherical indentation. J. Mater. Res. 19(6), 1605 (2011)
J. Malzbender, Comment on the determination of mechanical properties from the energy dissipated during indentation. J. Mater. Res. 20(5), 1090 (2011)
M. Sakai. Energy principle of the indentation-induced inelastic surface deformation and hardness of brittle materials. Acta Metall. Mater. 41(6), 1751 (1993).
I. Gupta, C. Sondergeld, C. Rai, Fracture toughness in shales using nano-indentation. J. Pet. Sci. Eng. 191 (2020).
M. Besterci, L. Pešek, P. Zubko, P. Hvizdoš, Mechanical properties of phases in Al–Al4C3 mechanically alloyed material measured by depth sensing indentation technique. Mater. Lett. 59(16), 1971 (2005)
X. Wang, X. Peng, Z. Guo, An experimental study of the indentation behaviour of Al foam. Eng. Rev. 34(1), 15 (2014)
P. Yao, W. Wang, C.Z. Huang, J. Wang, H.T. Zhu, T. Kuriyagawa, Indentation crack initiation and ductile to brittle transition behavior of fused silica, in Advanced Materials Research, vol. 797 (Trans Tech Publ, Bäch, 2013), p.667
B. Huang, M.-H. Zhao, T.-Y. Zhang, Indentation delamination and indentation fracture in ZnO/Si systems. MRS Online Proc. Libr. 687(1), 1 (2001)
S. Guicciardi, T. Shimozono, G. Pezzotti, Nanoindentation characterization of sub-micrometric Y-TZP ceramics. Adv. Eng. Mater. 8(10), 994 (2006)
C. Schuh, T. Nieh, Y. Kawamura, Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J. Mater. Res. 17(7), 1651 (2002)
S.-R. Jian, J.-B. Li, K.-W. Chen, J.S.-C. Jang, J.-Y. Juang, P.-J. Wei, J.-F. Lin, Mechanical responses of Mg-based bulk metallic glasses. Intermetallics 18(10), 1930 (2010)
J.-I. Jang, G. Pharr, Influence of indenter angle on cracking in Si and Ge during nanoindentation. Acta Mater. 56(16), 4458 (2008)
T. An, L. Wang, H. Tian, M. Wen, W. Zheng, Deformation and fracture of TiN coating on a Si (1 1 1) substrate during nanoindentation. Appl. Surf. Sci. 257(17), 7475 (2011)
Y.P. Cao, X.Q. Qian, J. Lu, Z.H. Yao, An energy-based method to extract plastic properties of metal materials from conical indentation tests. J. Mater. Res. 20(5), 1194 (2011)
P. Jiang, T. Zhang, R. Yang, Experimental verification for an instrumented spherical indentation technique in determining mechanical properties of metallic materials. J. Mater. Res. 26(11), 1414 (2011)
M. Dao, N. Chollacoop, K. Vliet, T.A. Venkatesh, S. Suresh, Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49(19), 3899 (2001)
D. Torres-Torres, J. Muñoz-Saldaña, L. Gutierrez-Ladron-de Guevara, A. Hurtado-Macías, M. Swain, Geometry and bluntness tip effects on elastic–plastic behaviour during nanoindentation of fused silica: experimental and FE simulation. Modell. Simul. Mater. Sci. Eng. 18(7), 075006 (2010).
C. Gao, M. Liu, Instrumented indentation of fused silica by Berkovich indenter. J Non-Cryst Solids. 475, 151 (2017)
M. Liu, D. Hou, C. Gao, Berkovich nanoindentation of Zr55Cu30Al10Ni5 bulk metallic glass at a constant loading rate. J Non-Cryst Solids. 561, 120750 (2021)
C. Gao, L. Yao, M. Liu, Berkovich nanoindentation of borosilicate K9 glass. Opt. Eng. 57(3), 034104 (2018)
J. Gong, H. Miao, Z. Peng, Analysis of the nanoindentation data measured with a Berkovich indenter for brittle materials: effect of the residual contact stress. Acta Mater. 52(3), 785 (2004)
M. Sakai, Simultaneous estimate of elastic/plastic parameters in depth-sensing indentation tests. Scr. Mater. 51(5), 391 (2004)
K. Xin, J.C. Lambropoulos, Densification of fused silica: effects on nanoindentation, in Inorganic Optical Materials II, vol. 4102 (International Society for Optics and Photonics, Bellingham, 2000), p.112
K. Ikezawa, T. Maruyama, Sharp tip geometry and its effect on hardness in nanoindentation experiments. J. Appl. Phys. 91(12), 9689 (2002)
M.T. Attaf, Tip bluntness determination using the energy principle and consequent correction to the indentation function. Mater. Lett. 58(6), 1100 (2004)
J. Nohava, J. Čech, M. Havlíček, R. Consiglio, Indenter wear study and proposal of a simple method for evaluation of indenter blunting. J. Mater. Res. 36(21), 4449 (2021)
Y. Bao, W. Wang, Y. Zhou, Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements. Acta Mater. 52(18), 5397 (2004)
J.L. Bucaille, S. Stauss, E. Felder, J. Michler, Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51(6), 1663 (2003)
Y.-T. Cheng, C.-M. Cheng, Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R 44(4), 91 (2004)
J. Woirgard, J. Dargenton, C. Tromas, V. Audurier, A new technology for nanohardness measurements: principle and applications. Surf. Coat. Technol. 100, 103 (1998)
C. Wang, Q. Cao, X. Wang, D. Zhang, S. Qu, J. Jiang, Time-dependent shear transformation zone in thin film metallic glasses revealed by nanoindentation creep. J. Alloys Compd. 696, 239 (2017)
X. Hao, G. Xiao, T. Jin, B. Su, E. Liu, X. Shu, Effect of indentation size on strain rate sensitivity of zirconia ceramics by nanoindentation. J. Aust. Ceram. Soc. 57(5), 1471 (2021)
W.Y. Huen, H. Lee, V. Vimonsatit, P. Mendis, Relationship of stiffness-based indentation properties using continuous-stiffness-measurement method. Materials 13(1), 97 (2019)
X. Dai, J. Cao, J. Liu, D. Wang, J. Feng, Interfacial reaction behavior and mechanical characterization of ZrO2/TC4 joint brazed by Ag–Cu filler metal. Mater. Sci. Eng. A 646, 182 (2015)
T. Csanádi, D. Németh, J. Dusza, Z. Lenčéš, P. Šajgalík, Nanoindentation induced deformation anisotropy in β-Si3N4 ceramic crystals. J. Eur. Ceram. Soc. 36(12), 3059 (2016)
Y. Kusano, Z. Barber, J. Evetts, I. Hutchings, Influence of inert gases on ionized magnetron plasma deposition of carbon nitride thin films. Surf. Coat. Technol. 174, 601 (2003)
Y. Kusano, I. Hutchings, Analysis of nano-indentation measurements on carbon nitride films. Surf. Coat. Technol. 169, 739 (2003)
Y.-T. Cheng, C.-M. Cheng, Relationships between hardness, elastic modulus, and the work of indentation. Appl. Phys. Lett. 73(5), 614 (1998)
J. Chen, S.J. Bull, Investigation of the relationship between work done during indentation and the hardness and Young’s modulus obtained by indentation testing. Int. J. Mater. Res. 99(8), 852 (2008)
Y.-T. Cheng, Z. Li, C.-M. Cheng, Scaling relationships for indentation measurements. Philos. Mag. A. 82(10), 1821 (2002)
M. Liu, Q. Zheng, X. Wang, C. Xu, Characterization of distribution of residual stress in shot-peened layer of nickel-based single crystal superalloy DD6 by nanoindentation technique. Mech. Mater. 164, 104143 (2022)
R. Yang, T. Zhang, P. Jiang, Y. Bai. Experimental verification and theoretical analysis of the relationships between hardness, elastic modulus, and the work of indentation. Appl. Phys. Lett. 92(23) (2008).
D. Chrobak, M. Dulski, G. Ziółkowski, A. Chrobak, Effect of the indentation load on the raman spectra of the InP crystal. Materials 15(15), 5098 (2022)
T. Chudoba, P. Schwaller, R. Rabe, J.-M. Breguet, J. Michler, Comparison of nanoindentation results obtained with Berkovich and cube-corner indenters. Philos. Mag. 86(33–35), 5265 (2006)
K.K. Jha, S. Zhang, N. Suksawang, T.-L. Wang, A. Agarwal, Work-of-indentation as a means to characterize indenter geometry and load–displacement response of a material. J. Phys. D 46(41), 415501 (2013)
S. Li, W. Yuan, Y. Ding, G. Wang, Indentation load–depth relation for an elastic layer with surface tension. Math. Mech. Solids 24(4), 1147 (2019)
S. Gonzalez, J. Fornell, E. Pellicer, S. Surinach, M.D. Baro, A.L. Greer, F.J. Belzunce, J. Sort, Influence of the shot-peening intensity on the structure and near-surface mechanical properties of Ti40Zr10Cu38Pd12 bulk metallic glass. Appl. Phys. Lett. 103(21) (2013).
V. Matyunin, N. Abusaif, A.Y. Marchenkov, Analysis of the indentation size effect on the hardness measurements of materials, in Journal of Physics: Conference Series, vol. 1399 (IOP Publishing, Bristol, 2019), p.044016
H. Bei, E.P. George, J. Hay, G.M. Pharr, Influence of indenter tip geometry on elastic deformation during nanoindentation. Phys. Rev. Lett. 95(4), 045501 (2005)
J. Chen, S. Bull, Multi-cycling nanoindentation study on thin optical coatings on glass. J. Phys. D 41(7), 074009 (2008)
G. Lu, J. Liu, H. Qiao, Y. Zhou, T. Jin, J. Zhao, X. Sun, Z. Hu, Surface nano-hardness and microstructure of a single crystal nickel base superalloy after laser shock. Peening. Optic. Laser Technol. 91, 116 (2017)
L. Wang, L. Wang, Y. Xue, H. Zhang, H. Fu, Nanoindentation response of laser shock peened Ti-based bulk metallic glass. AIP Adv. 5(5), 057156 (2015)
O. Jimenez, M. Audronis, M. Baker, A. Matthews, A. Leyland, Structure and mechanical properties of nitrogen-containing Zr–Cu based thin films deposited by pulsed magnetron sputtering. J. Phys. D 41(15), 155301 (2008)
A. Kawashima, H. Kurishita, H. Kimura, T. Zhang, A. Inoue, Fracture toughness of Zr55Al10Ni5Cu30 bulk metallic glass by 3-point bend testing. Mater. Trans. 46(7), 1725 (2005)
M. Yamasaki, S. Kagao, Y. Kawamura, Thermal diffusivity and conductivity of Zr55Al10Ni5Cu30 bulk metallic glass. Scr. Mater. 53(1), 63 (2005)
M.M. Khan, K.M. Deen, W. Haider, Combinatorial development and assessment of a Zr-based metallic glass for prospective biomedical applications. J. Non-Cryst. Solids. 523, 119544 (2019)
M. Zhang, F. Li, B. Chen, S. Wang, Investigation of micro-indentation characteristics of P/M nickel-base superalloy FGH96 using dislocation-power theory. Mater. Sci. Eng. A 535, 170 (2012)
R. Jiang, L. Zhang, Y. Zhao, X. Chen, B. Gan, X. Hao, Y. Song, Effects of hot corrosion on fatigue performance of GH4169 alloy. J. Mater. Eng. Perform. 30(3), 2300 (2021)
S. Wen, R. Zong, F. Zeng, Y. Gao, F. Pan, Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers. Acta Mater. 55(1), 345 (2007)
S. Krimpalis, K. Mergia, S. Messoloras, A. Dubinko, D. Terentyev, K. Triantou, J. Reiser, G. Pintsuk, Comparative study of the mechanical properties of different tungsten materials for fusion applications. Phys. Scr. 2017(T170), 014068 (2017)
P. Sellappan, A. Sharafat, V. Keryvin, P. Houizot, T. Rouxel, J. Grins, S. Esmaeilzadeh, Elastic properties and surface damage resistance of nitrogen-rich (Ca, Sr)–Si–O–N glasses. J. Non-Cryst. Solids. 356(41–42), 2120 (2010)
G. Tang, Y.-L. Shen, D. Singh, N. Chawla, Analysis of indentation-derived effective elastic modulus of metal-ceramic multilayers. Int. J. Mech. Mater. Des. 4(4), 391 (2008)
I. Tanakaa, F. Oba, T. Sekine, E. Ito, A. Kubo, K. Tatsumi, H. Adachi, T. Yamamoto, Hardness of cubic silicon nitride. J. Mater. Res. 17(4), 731 (2002)
M. Liu, Z. Xu, R. Fu, Micromechanical and microstructure characterization of BaO-Sm2O3–5TiO2 ceramic with addition of Al2O3. Ceram. Int. 48(1), 992 (2022)
M. Turkoz, S. Nezir, O. Ozturk, E. Asikuzun, G. Yildirim, C. Terzioglu, A. Varilci, Experimental and theoretical approaches on mechanical evaluation of Y123 system by Lu addition. J. Mater. Sci. 24(7), 2414 (2013)
S. Grillo, M. Ducarroir, M. Nadal, E. Tournie, J. Faurie, Nanoindentation of Si, GaP, GaAs and ZnSe single crystals. J. Phys. D 36(1), L5 (2002)
H.M. Wang, B.S. Xu, S.N. Ma, S.Y. Dong, X.Y. Li, Micro mechanical properties of n-Al2O3/Ni composite coating by nanoindentation. Transactions of Nonferrous Metals Society of China (English Edition). 14(SUPPL. 2), 115 (2004)
T. Kitagaki, T. Hoshino, K. Yano, N. Okamura, H. Ohara, T. Fukasawa and K. Koizumi: Mechanical properties of cubic (U, Zr) O2. J. Nucl. Eng. Radiat. Sci. 4(3) (2018).
H. Fu, L. Cai, Z. Chai, X. Liu, L. Zhang, S. Geng, K. Zhang, H. Liao, X. Wu, X. Wang, Evaluation of bonding properties by flat indentation method for an EBW joint of RAFM steel for fusion application. Nucl. Mater. Energy. 25, 100861 (2020)
L.-C. Chang, Y.-Z. Zheng, Y.-X. Gao, Y.-I. Chen, Mechanical properties and oxidation resistance of sputtered Cr–W–N coatings. Surf. Coat. Technol. 320, 196 (2017)
F. Chen, X. Tang, H. Huang, J. Liu, H. Li, Y. Qiu, D. Chen, Surface damage and mechanical properties degradation of Cr/W multilayer films irradiated by Xe20+. Appl. Surf. Sci. 357, 1225 (2015)
A.E. Giannakopoulos, S. Suresh, Determination of elastoplastic properties by instrumented sharp indentation. Scr. Mater. 40(10), 1191 (1999)
Y.T. Cheng, C.M. Cheng, Scaling approach to conical indentation in elastic-plastic solids with work hardening. J. Appl. Phys. 84(3), 1284 (1998)
Y.T. Cheng, C.M.C.Z. Zhemin, Scaling relationships in conical indentation of elastic-perfectly plastic solids. Int. J. Solids Struct. 36(8), 1231 (1999)
K.K. Jha, N. Suksawang, D. Lahiri, A. Agarwal, A novel energy-based method to evaluate indentation modulus and hardness of cementitious materials from nanoindentation load–displacement data. Mater. Struct. 48(9), 2915 (2014)
M. Ovsik, M. Stanek, A. Dockal and P. Fluxa: Electron radiation effect on indentation creep of construction polymers. In: 14th International Conference on Local Mechanical Properties (LMP) (Vol. 27, Trans Tech Publ, Zurich) (2019), pp. 116.
C.C. Huang, M.K. Wei, S. Lee, Transient and steady-state nanoindentation creep of polymeric materials. Int. J. Plast 27(7), 1093 (2011)
O. Smerdova, M. Pecora, M. Gigliotti, Cyclic indentation of polymers: instantaneous elastic modulus from reloading, energy analysis, and cyclic creep. J. Mater. Res. 34(21), 3688 (2019)
M.Y. N’Jock, F. Roudet, M. Idriss, O. Bartier, D. Chicot, Work-of-indentation coupled to contact stiffness for calculating elastic modulus by instrumented indentation. Mech. Mater. 94, 170 (2016)
M. Dejun, O.C. Wo, J. Liu, H. Jiawen, Determination of Young’s modulus by nanoindentation. Sci. China Ser. E 47(4), 398 (2004)
S. Jayaraman, G. Hahn, W. Oliver, C. Rubin, P. Bastias, Determination of monotonic stress-strain curve of hard materials from ultra-low-load indentation tests. Int. J. Solids Struct. 35(5–6), 365 (1998)
J. Chen, S.J. Bull, Relation between the ratio of elastic work to the total work of indentation and the ratio of hardness to Young’s modulus for a perfect conical tip. J. Mater. Res. 24(3), 590 (2011)
D. Ma, C. Ong, T. Zhang, An instrumented indentation method for Young’s modulus measurement with accuracy estimation. Exper. Mech. 49(5), 719 (2009)
D. Czekaja, A. Lisińska-Czekaja, J. Plewab, Study of nanomechanical properties of (1-y) BST-yMgO thin films. Ciência Tecnologia dos Mater. 29(1), e71 (2017)
A. Concustell, J. Sort, G. Alcalá, S. Mato, A. Gebert, J. Eckert, M. Baró, Plastic deformation and mechanical softening of Pd40Cu30Ni10P20 bulk metallic glass during nanoindentation. J. Mater. Res. 20(10), 2719 (2005)
D. Wang, L. Zhang, Y. Chen, H. Wang, Effect of high pressure-high temperature treatment on micro-mechanical properties of TC4 alloy. Heat Treat. Met. 41(2), 143 (2016)
Y.-X. Geng, X. Lin, Y.-X. Wang, J.-B. Qiang, Y.-M. Wang, C. Dong, Mechanical and magnetic properties of new (Fe Co, Ni)–B–Si–Ta bulk glassy alloys. Acta Metall. Sin. (Engl. Lett.) 30(7), 659 (2017)
D.C. Pender, N.P. Padture, A.E. Giannakopoulos, S. Suresh. Gradients in elastic modulus for improved contact-damage resistance. Part I: The silicon nitride-oxynitride glass system. Acta Mater. 49(16), 3255 (2001)
Y. Choi, H.-S. Lee, D. Kwon, Analysis of sharp-tip-indentation load–depth curve for contact area determination taking into account pile-up and sink-in effects. J. Mater. Res. 19(11), 3307 (2004)
T.A. Venkatesh, K. Vliet, A.E. Giannakopoulos, S. Suresh, Determination of elasto-plastic properties by instrumented sharp indentation: guidelines for property extraction. Scr. Mater. 42(9), 833 (2000)
J. Malzbender, G.D. With, Indentation load-displacement curve, plastic deformation, and energy. J. Mater. Res. 17(02), 502 (2002)
D.J. Ma, C.W. Ong, S.F. Wong, New relationship between Young’s modulus and nonideally sharp indentation parameters. J. Mater. Res. 19(7), 2144 (2004)
Acknowledgments
This project is supported by National Key Research and Development Program of China on the International Scientific Innovation Cooperation among Governments (Grant No. 2019YFE0191800), National Natural Science Foundation of China (Grant No. 51705082), and Innovation Programs from Southwest Institute of Physics (Grant Nos. 202101XWCXRZ001 and 202102XWCXYD001).
Funding
Funding was provided by National Key Research and Development Program of China on the International Scientific Innovation Cooperation among Governments (Grant No. 2019YFE0191800), National Natural Science Foundation of China (Grant No. 51705082), and Innovation Programs from Southwest Institute of Physics (Grant Nos. 202101XWCXRZ001 and 202102XWCXYD001).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liu, M., Cong, Z., Fu, H. et al. Relationships in instrumented indentation by Berkovich indenter. Journal of Materials Research 37, 4084–4102 (2022). https://doi.org/10.1557/s43578-022-00769-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-022-00769-x