Abstract
The traditional deep learning tracking method SiamFC faces performance degradation while solving issues, for instance, similar background, occlusion, target deformation, and illumination variation. This paper proposes an improved SiamFC with multi-feature fusion strategy. The proposed method first extracts the histogram of gradient and color name of the template image and search area by correlation filter. Then, the method fuses them and weights the SiamFC response map to obtain a more accurate object response position. Comparison experiments on VOT and OTB datasets prove that the improved method is more accurate and robust than the excellent tracking methods to deal with problems such as target cover, out of sight, scale variation and motion blur.
Similar content being viewed by others
REFERENCES
Yilmaz, A., Javed, O., and Shah, M., Object tracking: A survey, ACM Comput. Surv., 2006, vol. 38, no. 4, pp. 13–45. https://doi.org/10.1145/1177352.1177355
Yang, H., Shao, L., Zheng, F., Wang, L., and Song, Z., Recent advances and trends in visual tracking: A review, Neurocomputing, 2011, vol. 74, no. 18, pp. 3823–3831. https://doi.org/10.1016/j.neucom.2011.07.024
Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., and Shah, M., Visual tracking: An experimental survey, IEEE Trans. Pattern Anal. Mach. Intell., 2014, vol. 36, no. 7, pp. 1442–1468. https://doi.org/10.1109/TPAMI.2013.230
Li, P., Wang, D., Wang, L., and Lu, H., Deep visual tracking: Review and experimental comparison, Pattern Recognit., 2018, vol. 76, pp. 323–338. https://doi.org/10.1016/j.patcog.2017.11.007
Danelljan, M., Häger, G., Khan, F., and Felsberg, M., Accurate scale estimation for robust visual tracking, Proc. of the British Machine Vision Conference 2014, Valstar, M., French, A., and Pridmore, T., Eds., BMVA Press, 2014, pp. 1–11. https://doi.org/10.5244/C.28.65
Danelljan, M., Häger, G., Khan, F.S., and Felsberg, M., Discriminative scale space tracking, IEEE Trans. Pattern Anal. Mach. Intell., 2017, vol. 39, no. 8, pp. 1561–1575. https://doi.org/10.1109/TPAMI.2016.2609928
Zhang, J., Ma, S., and Sclaroff, S., MEEM: Robust tracking via multiple experts using entropy minimization, Computer Vision – ECCV 2014, Fleet, D., Pajdla, T., Schiele, B., and Tuytelaars, T., Eds., Lecture Notes in Computer Science, vol. 8694, Cham: Springer, 2014, pp. 188–203. https://doi.org/10.1007/978-3-319-10599-4_13
Bolme, D.S., Beveridge, J.R., Draper, B.A., and Lui, Y.M., Visual object tracking using adaptive correlation filters, IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, San Francisco, 2010, IEEE, 2010, pp. 2544–2550. https://doi.org/10.1109/CVPR.2010.5539960
Henriques, J.F., Caseiro, R., Martins, P., and Batista, J., Exploiting the circulant structure of tracking-by-detection with kernels, Computer Vision—ECCV 2012, Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., and Schmid, C., Eds., Lecture Notes in Computer Science, vol. 7575, Berlin: Springer, 2012, pp. 702–715. https://doi.org/10.1007/978-3-642-33765-9_50
Henriques, J.F., Caseiro, R., Martins, P., and Batista, J., High-speed tracking with kernelized correlation filters, IEEE Trans. Pattern Anal. Mach. Intell., 2015, vol. 37, no. 3, pp. 583–596. https://doi.org/10.1109/TPAMI.2014.2345390
Li, Y. and Zhu, J., A scale adaptive kernel correlation filter tracker with feature integration, Computer Vision— ECCV 2014 Workshops, Agapito, L., Bronstein, M., and Rother, C., Eds., Lecture Notes in Computer Science, vol. 8926, Cham: Springer, 2015, pp. 254–265. https://doi.org/10.1007/978-3-319-16181-5_18
Danelljan, M., Häger, G., Khan, F.S., and Felsberg, M., Learning spatially regularized correlation filters for visual tracking, IEEE Int. Conf. on Computer Vision (ICCV), Santiago, 2015, IEEE, 2015, pp. 4310–4318. https://doi.org/10.1109/ICCV.2015.490
Danelljan, M., Häger, G., Khan, F.S., and Felsberg, M., Convolutional features for correlation filter based visual tracking, IEEE Int. Conf. on Computer Vision Workshop (ICCVW), Santiago, 2015, IEEE, 2015, pp. 58–66.https://doi.org/10.1109/ICCVW.2015.84
Lukežic, A., Vojír, T., Zajc, L.C., Matas, J., and Kristan, M., Discriminative correlation filter with channel and spatial reliability, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, 2017, IEEE, 2017, pp. 6309–6318. https://doi.org/10.1109/CVPR.2017.515
Tao, R., Gavves, E., and Smeulders, A.W.M., Siamese instance search for tracking, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2016, IEEE, 2016, pp. 1420–1429. https://doi.org/10.1109/CVPR.2016.158
Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., and Torr, P.H., Fully-convolutional Siamese networks for object tracking, Computer Vision—ECCV 2016 Workshops, Hua, G. and Jégou, H., Eds., Lecture Notes in Computer Science, vol. 9914, Cham: Springer, 2016, pp. 850–865. https://doi.org/10.1007/978-3-319-48881-3_56
Krizhevsky, A., Sutskever, I., and Hinton, G.E., ImageNet classification with deep convolutional neural networks, Proc. 25th Int. Conf. on Neural Information Processing Systems, Lake Tahoe, Nev., 2012, Pereira, F., Burges, C.J.C., Bottou, L., and Weinberger, K.Q., Eds., Red Hook, N.Y.: Curran Associates, 2012, vol. 1, pp. 1097–1105.
Valmadre, J., Bertinetto, L., Henriques, J., and Vedaldi, A., and Torr, P.H.S., End-to-end representation learning for correlation filter based tracking, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, 2017, IEEE, 2017, pp. 2805–2813. https://doi.org/10.1109/CVPR.2017.531
Wang, Q., Gao, J., Xing, J., Zhang, M., and Hu, W., DCFNet: Discriminant correlation filters network for visual tracking, 2017. arXiv:1704.04057 [cs.CV]
Li, B., Yan, J., Wu, W., Zhu, Z., and Hu, X., High performance visual tracking with Siamese region proposal network, IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Salt Lake City, Utah, 2018, IEEE, 2018, pp. 8971–8980. https://doi.org/10.1109/CVPR.2018.00935
Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., and Hu, W., Distractor-aware Siamese networks for visual object tracking, Computer Vision—ECCV 2018, Ferrari, V., Hebert, M., Sminchisescu, C., and Weiss, Y., Eds., Lecture Notes in Computer Science, vol. 11213, Cham: Springer, 2018, pp. 101–117. https://doi.org/10.1007/978-3-030-01240-3_7
Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., and Yan, J., SiamRPN++: Evolution of Siamese visual tracking with very deep networks, IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), Long Beach, Calif., 2019, IEEE, 2019, pp. 4282–4291. https://doi.org/10.1109/CVPR.2019.00441
Wang, Q., Li, Z., Bertinetto, L., Hu, W., and Torr, P.H.S., Fast online object tracking and segmentation: A unifying approach, IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), Long Beach, Calif., 2019, IEEE, 2019, pp. 1328–1338. https://doi.org/10.1109/CVPR.2019.00142
Fan, H. and Ling, H., Siamese cascaded region proposal networks for real-time visual tracking, IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), Long Beach, Calif., 2019, IEEE, 2019, pp. 7952–7961. https://doi.org/10.1109/CVPR.2019.00814
Danelljan, M., Bhat, G., Khan, F.S., and Felsberg, M., ATOM: Accurate tracking by overlap maximization, IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), Long Beach, Calif., 2019, IEEE, 2019, pp. 4660–4669. https://doi.org/10.1109/CVPR.2019.00479
Wu, Y., Lim, J., and Yang, M.-H., Online object tracking: A benchmark, IEEE Conf. on Computer Vision and Pattern Recognition, Portland, Ore., 2013, IEEE, 2013, pp. 2411–2418. https://doi.org/10.1109/CVPR.2013.312
Dalal, N. and Triggs, B., Histograms of oriented gradients for human detection, IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR’05), San Diego, Calif., 2005, IEEE, 2005, vol. 1, pp. 886–893. https://doi.org/10.1109/CVPR.2005.177
Danelljan, M., Khan, F.S., Felsberg, M., and Van De Weijer, J., Adaptive color attributes for real-time visual tracking, IEEE Conf. on Computer Vision and Pattern Recognition, Columbus, Ohio, 2014, IEEE, 2014, pp. 1090–1097. https://doi.org/10.1109/CVPR.2014.143
Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., and Torr, P.H., Staple: Complementary learners for real-time tracking, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2016, IEEE, 2016, pp. 1401–1409. https://doi.org/10.1109/CVPR.2016.156
Gao, T., Wang, N., Cai, J., Lin, W., Yu, X., Qiu, J., and Gao, H., Explicitly exploiting hierarchical features in visual object tracking, Neurocomputing, 2020, vol. 397, pp. 203–211. https://doi.org/10.1016/j.neucom.2020.02.038
Funding
This research was financially supported by the TaiShan Scholar Foundation (project no. tshw201502042), Shandong Province Key Research and Development Plan (project nos. 2017CXG0607 and 2017GGX30145), and National Natural Science Foundation of China (project no. 61702295).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflicts of interest.
About this article
Cite this article
Qingdang Li, Xu, R., Zhang, M. et al. Visual Tracking Method Based on Siamese Network with Multi-Feature Fusion. Aut. Control Comp. Sci. 56, 150–159 (2022). https://doi.org/10.3103/S0146411622020080
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.3103/S0146411622020080