Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Information categories

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

“Information systems” have been introduced by Dana Scott as a convenient means of presenting a certain class of domains of computation, usually known as Scott domains. Essentially the same idea has been developed, if less systematically, by various authors in connection with other classes of domains. In previous work, the present authors introduced the notion of anI-category as an abstraction and enhancement of this idea, with emphasis on the solution ofdomain equations of the formDF(D), withF a functor. An important feature of the work is that we arenot confined to domains of computation as usually understood; other classes of spaces, more familiar to mathematicians in general, become also accessible. Here we present the idea in terms of what we callinformation categories, which are concrete I-categories in which the objects are structured sets of “tokens” and morphisms are relations between tokens. This is more in the spirit of information system work, and enables more specific results to be obtained. Following an account of the general theory, several examples are discussed in some detail: Stone spaces (as an “ordinary” mathematical example), Scott domains, SFP domains, and continuous bounded complete domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin, M., A. Grothendick, and J.L. Verdier: 1972, ‘Théorie des toppos et cohomologie étale des schémas (sga 4)’,Lecture Notes in Mathematics 269, 413.

  2. Barwise, K.J.: 1977, ‘An introduction to first order logic’, in: K.J. Barwise, ed.,The Handbook of Mathematical Logic, Studies in Logic and Foundations of Mathematics, pp. 5–46, North-Holland.

  3. Berry, G. and P.-L. Curien: 1981, ‘Sequential algorithms on concrete data structures’. Technical report, Report of Ecole Nationale Superieure des Mines de Paris, Centre de Mathematiques Appliquées, Sophia Antipolis.

    Google Scholar 

  4. Berry, G.: 1978, ‘Stable models of types λ-calculi’, in:Proceedings of the 5th International Colloquium on Automata, Languages and Programming, volume 62 ofLecture Notes in Computer Science, pp. 72–89. Springer-Verlag.

  5. Batarekh, A. and V.S. Subrahmanian: 1989, “The query topology in logic programming’, in: B. Monien R. Cori, ed.,STACS 89, pp. 375–387. Springer-Verlag. Lecture Notes in Computer Science Vol. 349.

  6. Coquand, T., C. Gunter, and G. Winskel: 1987, ‘dI-domains as a model of polymorphism’, in:Third Workshop on the Mathematical Foundations of Programming Language Semantics, pp. 344–363. Springer-Verlag.

  7. Davey, B.A. and H.A. Priestley: 1990,Introduction to Lattices and Order, Cambridge University Press, Cambridge.

    Google Scholar 

  8. Edalat, A. and M.B. Smyth: 1991, ‘Categories of information systems’, in: D.H. Pitt, P.L. Curien, S. Abramsky, A.M. Pitts, A. Poigne, and D.E. Rydeheard, eds.,Category Theory in Computer Science, pp. 37–52. Springer-Verlag.

  9. Edalat, A. and M.B. Smyth: 1991, ‘Categories of information systems’, Technical Report Doc 91/21, Department of Computing, Imperial College.

  10. Edalat, A. and M.B. Smyth: 1992, ‘I-categories as a framework for solving domain equation’,Theoretical Computer Science, to appear.

  11. Edalat, A. and M.B. Smyth: 1992, ‘Metric information system’, to appear.

  12. Fourman, M.P. and R.J. Grayson: 1982, ‘Formal spaces’, in: A.S. Trolstra and D. van Dalen, eds.,The L.E.J. Brouwer Centenary Symposium, pp. 107–121. North Holland.

  13. Freyd, P.: 1964,Abelian Categories: An Introduction to the Theory of Functors, Harper and Row, New York.

    Google Scholar 

  14. Graetzer, G.: 1979,Universal Algebra, Springer Verlag, Berlin, Heidelberg, New York, 2nd edition.

    Google Scholar 

  15. Gunter, C.: 1987, ‘Universal profinite domains’,Information and Computation 72 (1), 1–30.

    Google Scholar 

  16. Halmos, P.R.: 1963,Lectures on Boolean Algebras, Number 1 in Van Nostrand Mathematical Studies, Princeton.

  17. Jung, A.: 1988,Cartesian Closed Categories of Domains. PhD thesis, Technische Hochschule Darmstadt.

  18. Lloyd, J.W.: 1987,Foundations of Logic Programming, Springer-Verlag.

  19. Lambek, J. and P.J. Scott: 1986,Introduction to Higher Order Categorical Logic, Cambridge Studies in Advanced Mathematics Vol. 7. Cambridge University Press.

  20. Larsen, K.G. and G. Winskel: 1984, ‘Using information systems to solve recursive domain equations effectively’, in: D.B. MacQueen, G. Kahn, and G. Plotkin, eds.,Semantics of Data Types, pp. 109–130, Berlin, Springer-Verlag. Lecture Notes in Computer Science Vol. 173.

    Google Scholar 

  21. Manes, E. and M.A. Arbib: 1986,Algebraic Approaches to Program Semantics, Springer-Verlag.

  22. Plotkin, G.D.: 1981, ‘Post-graduate lecture notes in advanced domain theory (incorporating the “Pisa Notes”). Dept. of Computer Science, Univ. of Edinburgh.

  23. Scott, D.S.: 1972, ‘Continuous lattices’, in: E. Lawvere, ed.,Toposes, Algebraic Geometry and Logic, pp. 97–136. Springer-Verlag, Berlin. Lecture Note in Mathematics 274.

    Google Scholar 

  24. Scott, D.S.: 1980, ‘Some models, som philosophy’, in: J. Barwise, H.J. Keisler, and K. Kunen, eds.,The Kleene Symposium, pp. 223–265. North-Holland Publishing Company.

  25. Scott, D.S.: 1982, ‘Domains for denotational semantics’, in: M. Nielson and E.M. Schmidt, eds.,Automata, Languages and Programming: Proceedings 1982, Lecture Notes in Computer Science No. 140, Springer-Verlag, Berlin.

    Google Scholar 

  26. Smyth, M.B.: 1977, ‘Effectively given domains’,Theoretical Computer Science 5, 257–274.

    Google Scholar 

  27. Smyth, M.B.: 1983, ‘The largest cartesian closed category of domains’,Theoretical Computer Science 27, 109–119.

    Google Scholar 

  28. Smyth, M.B.: 1992, ‘Stable compactification i’,J. London Math. Soc. (2) 45, 321–340.

    Google Scholar 

  29. Smyth, M.B. and G.D. Plotkin: 1982, ‘The category-theoretic solution of recursive domain equations’,SIAM J. Computing 11, 761–783.

    Google Scholar 

  30. Tennent, R.D.: 1991,Semantics of Programming Languages, Prentice Hall.

  31. Winskel, G.: 1986, ‘Event structures’, in:Foundations of Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science Vol. 255, Springer-Verlag, Berlin, pp. 325–392.

    Google Scholar 

  32. Zhang, G.Q.: 1989, ‘dI-domains as information systems’, in: G. Ausiello, M. Dezani-Ciancaglini, and S. Ronchi Della Rocca, eds.,Automata, Languages and Programming, volume 372 ofLecture Notes in Computer Science, Springer Verlag, Berlin, pp. 773–788.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edalat, A., Smyth, M.B. Information categories. Appl Categor Struct 1, 197–232 (1993). https://doi.org/10.1007/BF00880044

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00880044

Mathematics Subject Classifications (1991)

Key words