Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We perform the fit of electroweak precision observables within the Standard Model with a 126 GeV Higgs boson, compare the results with the theoretical predictions and discuss the impact of recent experimental and theoretical improvements. We introduce New Physics contributions in a model-independent way and fit for the S, T and U parameters, for the ϵ 1,2,3,b ones, for modified \( Zb\overline{b} \) couplings and for a modified Higgs coupling to vector bosons. We point out that composite Higgs models are very strongly constrained. Finally, we compute the bounds on dimension-six operators relevant for the electroweak fit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Amaldi et al., A comprehensive analysis of data pertaining to the weak neutral current and the intermediate vector boson masses, Phys. Rev. D 36 (1987) 1385 [INSPIRE].

    ADS  Google Scholar 

  2. G. Costa, J.R. Ellis, G.L. Fogli, D.V. Nanopoulos and F. Zwirner, Neutral currents within and beyond the standard model, Nucl. Phys. B 297 (1988) 244 [INSPIRE].

    ADS  Google Scholar 

  3. P. Langacker and M.-x. Luo, Implications of precision electroweak experiments for M t , ρ 0 , sin2 θ W and grand unification, Phys. Rev. D 44 (1991) 817 [INSPIRE].

    ADS  Google Scholar 

  4. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  5. J. Erler and P. Langacker, Implications of high precision experiments and the CDF top quark candidates, Phys. Rev. D 52 (1995) 441 [hep-ph/9411203] [INSPIRE].

    ADS  Google Scholar 

  6. G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [INSPIRE].

    ADS  Google Scholar 

  7. G. Altarelli, R. Barbieri and S. Jadach, Toward a model independent analysis of electroweak data, Nucl. Phys. B 369 (1992) 3 [Erratum ibid. B 376 (1992) 444] [INSPIRE].

  8. G. Altarelli, R. Barbieri and F. Caravaglios, Nonstandard analysis of electroweak precision data, Nucl. Phys. B 405 (1993) 3 [INSPIRE].

    ADS  Google Scholar 

  9. R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].

    ADS  Google Scholar 

  10. B. Grinstein and M.B. Wise, Operator analysis for precision electroweak physics, Phys. Lett. B 265 (1991) 326 [INSPIRE].

    ADS  Google Scholar 

  11. R. Barbieri and A. Strumia, What is the limit on the Higgs mass?, Phys. Lett. B 462 (1999) 144 [hep-ph/9905281] [INSPIRE].

    ADS  Google Scholar 

  12. ATLAS collaboration, Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-014 (2013).

  13. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  14. CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013).

  15. CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE].

    ADS  Google Scholar 

  16. A. Freitas and Y.-C. Huang, Electroweak two-loop corrections to sin2 \( \theta_{\mathrm{eff}}^{{b\overline{b}}} \) and R b using numerical Mellin-Barnes integrals, JHEP 08 (2012) 050 [Erratum ibid. 1305 (2013) 074] [arXiv:1205.0299] [INSPIRE].

  17. G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    ADS  Google Scholar 

  18. R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].

    ADS  Google Scholar 

  19. A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].

  20. R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. A. Caldwell, D. Kollar and K. Kroninger, BAT: the Bayesian Analysis Toolkit, Comput. Phys. Commun. 180 (2009) 2197 [arXiv:0808.2552] [INSPIRE].

    ADS  MATH  Google Scholar 

  22. D.Y. Bardin et al., ZFITTER v.6.21: a semianalytical program for fermion pair production in e + e annihilation, Comput. Phys. Commun. 133 (2001) 229 [hep-ph/9908433] [INSPIRE].

    ADS  MATH  Google Scholar 

  23. D.Y. Bardin et al., ZFITTER: an analytical program for fermion pair production in e + e annihilation, hep-ph/9412201 [INSPIRE].

  24. A. Arbuzov et al., ZFITTER: a semi-analytical program for fermion pair production in e + e annihilation, from version 6.21 to version 6.42, Comput. Phys. Commun. 174 (2006) 728 [hep-ph/0507146] [INSPIRE].

    ADS  Google Scholar 

  25. A. Akhundov, A. Arbuzov, S. Riemann and T. Riemann, ZFITTER 1985–2013, arXiv:1302.1395 [INSPIRE].

  26. G.-C. Cho and K. Hagiwara, Supersymmetry versus precision experiments revisited, Nucl. Phys. B 574 (2000) 623 [hep-ph/9912260] [INSPIRE].

    ADS  Google Scholar 

  27. G.-C. Cho, K. Hagiwara, Y. Matsumoto and D. Nomura, The MSSM confronts the precision electroweak data and the muon g − 2, JHEP 11 (2011) 068 [arXiv:1104.1769] [INSPIRE].

    ADS  Google Scholar 

  28. M. Ciuchini et al., 2000 CKM triangle analysis: a critical review with updated experimental inputs and theoretical parameters, JHEP 07 (2001) 013 [hep-ph/0012308] [INSPIRE].

    ADS  Google Scholar 

  29. Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  30. S. Bethke, World summary of α s (2012), Nucl. Phys. Proc. Suppl. 234 (2013) 229 [arXiv:1210.0325] [INSPIRE].

    ADS  Google Scholar 

  31. H. Burkhardt and B. Pietrzyk, Recent BES measurements and the hadronic contribution to the QED vacuum polarization, Phys. Rev. D 84 (2011) 037502 [arXiv:1106.2991] [INSPIRE].

    ADS  Google Scholar 

  32. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α(M Z ), Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].

  33. K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2) μ and \( \alpha \left( {M_Z^2} \right) \) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].

    ADS  Google Scholar 

  34. F. Jegerlehner, Electroweak effective couplings for future precision experiments, Nuovo Cim. C 034S1 (2011) 31 [arXiv:1107.4683] [INSPIRE].

    Google Scholar 

  35. CDF, D0 collaboration, T. Aaltonen et al., Combination of the top-quark mass measurements from the Tevatron collider, Phys. Rev. D 86 (2012) 092003 [arXiv:1207.1069] [INSPIRE].

    ADS  Google Scholar 

  36. ATLAS collaboration, Combination of ATLAS and CMS results on the mass of the top quark using up to 4.9 fb −1 of data, ATLAS-CONF-2012-095 (2012).

  37. S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].

    ADS  Google Scholar 

  38. K. Chetyrkin, B.A. Kniehl and M. Steinhauser, Strong coupling constant with flavor thresholds at four loops in the MS scheme, Phys. Rev. Lett. 79 (1997) 2184 [hep-ph/9706430] [INSPIRE].

    ADS  Google Scholar 

  39. K. Chetyrkin, Quark mass anomalous dimension to \( O\left( {\alpha_S^4} \right) \), Phys. Lett. B 404 (1997) 161 [hep-ph/9703278] [INSPIRE].

    ADS  Google Scholar 

  40. K. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [INSPIRE].

    ADS  MATH  Google Scholar 

  41. The LEP Electroweak Working Group, http://lepewwg.web.cern.ch/LEPEWWG/.

  42. A. Sirlin, Radiative corrections in the SU(2) L × U(1) theory: a simple renormalization framework, Phys. Rev. D 22 (1980) 971 [INSPIRE].

    ADS  Google Scholar 

  43. W. Marciano and A. Sirlin, Radiative corrections to neutrino induced neutral current phenomena in the SU(2) L × U(1) theory, Phys. Rev. D 22 (1980) 2695 [Erratum ibid. D 31 (1985) 213] [INSPIRE].

  44. D.Y. Bardin, P.K. Khristova and O. Fedorenko, On the lowest order electroweak corrections to spin 1/2 fermion scattering. 1. The one loop diagrammar, Nucl. Phys. B 175 (1980) 435 [INSPIRE].

    ADS  Google Scholar 

  45. D.Y. Bardin, P.K. Khristova and O. Fedorenko, On the lowest order electroweak corrections to spin 1/2 fermion scattering. 2. The one loop amplitudes, Nucl. Phys. B 197 (1982) 1 [INSPIRE].

    ADS  Google Scholar 

  46. M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Precise prediction for the W boson mass in the standard model, Phys. Rev. D 69 (2004) 053006 [hep-ph/0311148] [INSPIRE].

    ADS  Google Scholar 

  47. A. Djouadi and C. Verzegnassi, Virtual very heavy top effects in LEP/SLC precision measurements, Phys. Lett. B 195 (1987) 265 [INSPIRE].

    ADS  Google Scholar 

  48. A. Djouadi, O(αα s ) vacuum polarization functions of the standard model gauge bosons, Nuovo Cim. A 100 (1988) 357 [INSPIRE].

    ADS  Google Scholar 

  49. B.A. Kniehl, Two loop corrections to the vacuum polarizations in perturbative QCD, Nucl. Phys. B 347 (1990) 86 [INSPIRE].

    ADS  Google Scholar 

  50. F. Halzen and B.A. Kniehl, Δr beyond one loop, Nucl. Phys. B 353 (1991) 567 [INSPIRE].

    ADS  Google Scholar 

  51. B.A. Kniehl and A. Sirlin, Dispersion relations for vacuum polarization functions in electroweak physics, Nucl. Phys. B 371 (1992) 141 [INSPIRE].

    ADS  Google Scholar 

  52. B.A. Kniehl and A. Sirlin, On the effect of the \( t\overline{t} \) threshold on electroweak parameters, Phys. Rev. D 47 (1993) 883 [INSPIRE].

    ADS  Google Scholar 

  53. A. Djouadi and P. Gambino, Electroweak gauge bosons selfenergies: complete QCD corrections, Phys. Rev. D 49 (1994) 3499 [Erratum ibid. D 53 (1996) 4111] [hep-ph/9309298] [INSPIRE].

  54. L. Avdeev, J. Fleischer, S. Mikhailov and O. Tarasov, \( O\left( {\alpha \alpha_S^2} \right) \) correction to the electroweak ρ parameter, Phys. Lett. B 336 (1994) 560 [Erratum ibid. B 349 (1995) 597-598] [hep-ph/9406363] [INSPIRE].

  55. K. Chetyrkin, J.H. Kuhn and M. Steinhauser, Corrections of order \( \mathcal{O}\left( {{G_F}M_t^2\alpha_s^2} \right) \) to the ρ parameter, Phys. Lett. B 351 (1995) 331 [hep-ph/9502291] [INSPIRE].

    ADS  Google Scholar 

  56. K. Chetyrkin, J.H. Kuhn and M. Steinhauser, QCD corrections from top quark to relations between electroweak parameters to order \( \alpha_S^2 \), Phys. Rev. Lett. 75 (1995) 3394 [hep-ph/9504413] [INSPIRE].

    ADS  Google Scholar 

  57. R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci and A. Vicere, Radiative correction effects of a very heavy top, Phys. Lett. B 288 (1992) 95 [Erratum ibid. B 312 (1993) 511] [hep-ph/9205238] [INSPIRE].

  58. R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci and A. Vicere, Two loop heavy top effects in the standard model, Nucl. Phys. B 409 (1993) 105 [INSPIRE].

    ADS  Google Scholar 

  59. J. Fleischer, O. Tarasov and F. Jegerlehner, Two loop heavy top corrections to the rho parameter: a simple formula valid for arbitrary Higgs mass, Phys. Lett. B 319 (1993) 249 [INSPIRE].

    ADS  Google Scholar 

  60. J. Fleischer, O. Tarasov and F. Jegerlehner, Two loop large top mass corrections to electroweak parameters: analytic results valid for arbitrary Higgs mass, Phys. Rev. D 51 (1995) 3820 [INSPIRE].

    ADS  Google Scholar 

  61. G. Degrassi, P. Gambino and A. Vicini, Two loop heavy top effects on the m Z -m W interdependence, Phys. Lett. B 383 (1996) 219 [hep-ph/9603374] [INSPIRE].

    ADS  Google Scholar 

  62. G. Degrassi, P. Gambino and A. Sirlin, Precise calculation of M W , sin2 θ W (M Z) and sin2 \( \theta_{\mathrm{eff}}^{\mathrm{lept}} \), Phys. Lett. B 394 (1997) 188 [hep-ph/9611363] [INSPIRE].

    ADS  Google Scholar 

  63. G. Degrassi and P. Gambino, Two loop heavy top corrections to the Z 0 boson partial widths, Nucl. Phys. B 567 (2000) 3 [hep-ph/9905472] [INSPIRE].

    ADS  Google Scholar 

  64. A. Freitas, W. Hollik, W. Walter and G. Weiglein, Complete fermionic two loop results for the M W -M Z interdependence, Phys. Lett. B 495 (2000) 338 [Erratum ibid. B 570 (2003) 260-264] [hep-ph/0007091] [INSPIRE].

  65. A. Freitas, W. Hollik, W. Walter and G. Weiglein, Electroweak two loop corrections to the M W -M Z mass correlation in the standard model, Nucl. Phys. B 632 (2002) 189 [Erratum ibid. B 666 (2003) 305-307] [hep-ph/0202131] [INSPIRE].

  66. M. Awramik and M. Czakon, Complete two loop bosonic contributions to the muon lifetime in the standard model, Phys. Rev. Lett. 89 (2002) 241801 [hep-ph/0208113] [INSPIRE].

    ADS  Google Scholar 

  67. A. Onishchenko and O. Veretin, Two loop bosonic electroweak corrections to the muon lifetime and M Z -M W interdependence, Phys. Lett. B 551 (2003) 111 [hep-ph/0209010] [INSPIRE].

    ADS  Google Scholar 

  68. M. Awramik, M. Czakon, A. Onishchenko and O. Veretin, Bosonic corrections to Δr at the two loop level, Phys. Rev. D 68 (2003) 053004 [hep-ph/0209084] [INSPIRE].

    ADS  Google Scholar 

  69. M. Awramik and M. Czakon, Two loop electroweak bosonic corrections to the muon decay lifetime, Nucl. Phys. Proc. Suppl. 116 (2003) 238 [hep-ph/0211041] [INSPIRE].

    ADS  Google Scholar 

  70. M. Awramik and M. Czakon, Complete two loop electroweak contributions to the muon lifetime in the standard model, Phys. Lett. B 568 (2003) 48 [hep-ph/0305248] [INSPIRE].

    ADS  Google Scholar 

  71. J. van der Bij, K. Chetyrkin, M. Faisst, G. Jikia and T. Seidensticker, Three loop leading top mass contributions to the rho parameter, Phys. Lett. B 498 (2001) 156 [hep-ph/0011373] [INSPIRE].

    ADS  Google Scholar 

  72. M. Faisst, J.H. Kuhn, T. Seidensticker and O. Veretin, Three loop top quark contributions to the ρ parameter, Nucl. Phys. B 665 (2003) 649 [hep-ph/0302275] [INSPIRE].

    ADS  Google Scholar 

  73. G. Weiglein, Results for precision observables in the electroweak standard model at two loop order and beyond, Acta Phys. Polon. B 29 (1998) 2735 [hep-ph/9807222] [INSPIRE].

    ADS  Google Scholar 

  74. R. Boughezal, J. Tausk and J. van der Bij, Three-loop electroweak correction to the Rho parameter in the large Higgs mass limit, Nucl. Phys. B 713 (2005) 278 [hep-ph/0410216] [INSPIRE].

    ADS  Google Scholar 

  75. R. Boughezal, J. Tausk and J. van der Bij, Three-loop electroweak corrections to the W-boson mass and sin2 \( \theta_{\mathrm{eff}}^{\mathrm{lept}} \) in the large Higgs mass limit, Nucl. Phys. B 725 (2005) 3 [hep-ph/0504092] [INSPIRE].

    ADS  Google Scholar 

  76. Y. Schröder and M. Steinhauser, Four-loop singlet contribution to the ρ parameter, Phys. Lett. B 622 (2005) 124 [hep-ph/0504055] [INSPIRE].

    ADS  Google Scholar 

  77. K. Chetyrkin, M. Faisst, J.H. Kuhn, P. Maierhofer and C. Sturm, Four-loop QCD corrections to the ρ parameter, Phys. Rev. Lett. 97 (2006) 102003 [hep-ph/0605201] [INSPIRE].

    ADS  Google Scholar 

  78. R. Boughezal and M. Czakon, Single scale tadpoles and \( O\left( {{G_F}m_t^2\alpha_s^3} \right) \) corrections to the ρ parameter, Nucl. Phys. B 755 (2006) 221 [hep-ph/0606232] [INSPIRE].

    ADS  Google Scholar 

  79. D.Y. Bardin and G. Passarino, The standard model in the making: precision study of the electroweak interactions, Oxford University Press, Oxford U.K. (1999).

    Google Scholar 

  80. M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Complete two-loop electroweak fermionic corrections to sin2 \( \theta_{\mathrm{eff}}^{\mathrm{lept}} \) and indirect determination of the Higgs boson mass, Phys. Rev. Lett. 93 (2004) 201805 [hep-ph/0407317] [INSPIRE].

    ADS  Google Scholar 

  81. M. Awramik, M. Czakon and A. Freitas, Electroweak two-loop corrections to the effective weak mixing angle, JHEP 11 (2006) 048 [hep-ph/0608099] [INSPIRE].

    ADS  Google Scholar 

  82. M. Awramik, M. Czakon, A. Freitas and B. Kniehl, Two-loop electroweak fermionic corrections to sin2 \( \theta_{\mathrm{eff}}^{{b\overline{b}}} \), Nucl. Phys. B 813 (2009) 174 [arXiv:0811.1364] [INSPIRE].

    ADS  Google Scholar 

  83. A. Freitas, private communication.

  84. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].

    ADS  Google Scholar 

  85. ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups Collaboration, Precision electroweak measurements and constraints on the standard model, arXiv:1012.2367 [INSPIRE].

  86. K. Chetyrkin, J.H. Kuhn and A. Kwiatkowski, QCD corrections to the e + e cross-section and the Z boson decay rate, hep-ph/9503396 [INSPIRE].

  87. P. Baikov, K. Chetyrkin, J. Kuhn and J. Rittinger, Complete \( \mathcal{O}\left( {\alpha_s^4} \right) \) QCD corrections to hadronic Z-decays, Phys. Rev. Lett. 108 (2012) 222003 [arXiv:1201.5804] [INSPIRE].

    ADS  Google Scholar 

  88. A. Czarnecki and J.H. Kuhn, Nonfactorizable QCD and electroweak corrections to the hadronic Z boson decay rate, Phys. Rev. Lett. 77 (1996) 3955 [hep-ph/9608366] [INSPIRE].

    ADS  Google Scholar 

  89. R. Harlander, T. Seidensticker and M. Steinhauser, Complete corrections of O(αα s ) to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125 [hep-ph/9712228] [INSPIRE].

    ADS  Google Scholar 

  90. D.Y. Bardin, S. Riemann and T. Riemann, Electroweak one loop corrections to the decay of the charged vector boson, Z. Phys. C 32 (1986) 121 [INSPIRE].

    ADS  Google Scholar 

  91. CDF, D0 collaboration, T.E.W. Group, 2012 update of the combination of CDF and D0 results for the mass of the W boson, arXiv:1204.0042 [INSPIRE].

  92. UTfit collaboration, M. Bona et al., The 2004 UTfit collaboration report on the status of the unitarity triangle in the standard model, JHEP 07 (2005) 028 [hep-ph/0501199] [INSPIRE].

    ADS  Google Scholar 

  93. J. Erler, Tests of the electroweak standard model, arXiv:1209.3324 [INSPIRE].

  94. O. Eberhardt et al., Impact of a Higgs boson at a mass of 126 GeV on the standard model with three and four fermion generations, Phys. Rev. Lett. 109 (2012) 241802 [arXiv:1209.1101] [INSPIRE].

    ADS  Google Scholar 

  95. M. Baak et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].

    ADS  Google Scholar 

  96. M. Baak and R. Kogler, The global electroweak standard model fit after the Higgs discovery, arXiv:1306.0571 [INSPIRE].

  97. D. Kennedy and B. Lynn, Electroweak radiative corrections with an effective lagrangian: four fermion processes, Nucl. Phys. B 322 (1989) 1 [INSPIRE].

    ADS  Google Scholar 

  98. D. Kennedy, B. Lynn, C. Im and R. Stuart, Electroweak cross-sections and asymmetries at the Z 0, Nucl. Phys. B 321 (1989) 83 [INSPIRE].

    ADS  Google Scholar 

  99. M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    ADS  Google Scholar 

  100. I. Maksymyk, C. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [hep-ph/9306267] [INSPIRE].

    ADS  Google Scholar 

  101. C. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, A global fit to extended oblique parameters, Phys. Lett. B 326 (1994) 276 [hep-ph/9307337] [INSPIRE].

    ADS  Google Scholar 

  102. C. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, Model independent global constraints on new physics, Phys. Rev. D 49 (1994) 6115 [hep-ph/9312291] [INSPIRE].

    ADS  Google Scholar 

  103. G. Altarelli, R. Barbieri and F. Caravaglios, The epsilon variables for electroweak precision tests: A Reappraisal, Phys. Lett. B 349 (1995) 145 [INSPIRE].

    ADS  Google Scholar 

  104. G. Altarelli, R. Barbieri and F. Caravaglios, Electroweak precision tests: a concise review, Int. J. Mod. Phys. A 13 (1998) 1031 [hep-ph/9712368] [INSPIRE].

    ADS  Google Scholar 

  105. P. Bamert, C. Burgess, J.M. Cline, D. London and E. Nardi, R b and new physics: a comprehensive analysis, Phys. Rev. D 54 (1996) 4275 [hep-ph/9602438] [INSPIRE].

    ADS  Google Scholar 

  106. H.E. Haber and H.E. Logan, Radiative corrections to the \( Zb\overline{b} \) vertex and constraints on extended Higgs sectors, Phys. Rev. D 62 (2000) 015011 [hep-ph/9909335] [INSPIRE].

    ADS  Google Scholar 

  107. D. Choudhury, T.M. Tait and C. Wagner, Beautiful mirrors and precision electroweak data, Phys. Rev. D 65 (2002) 053002 [hep-ph/0109097] [INSPIRE].

    ADS  Google Scholar 

  108. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

    ADS  Google Scholar 

  109. A. Djouadi, G. Moreau and F. Richard, Resolving the \( A_{\mathrm{FB}}^{\mathrm{b}} \) puzzle in an extra dimensional model with an extended gauge structure, Nucl. Phys. B 773 (2007) 43 [hep-ph/0610173] [INSPIRE].

    ADS  Google Scholar 

  110. F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak limits on general new vector bosons, JHEP 09 (2010) 033 [arXiv:1005.3998] [INSPIRE].

    Google Scholar 

  111. L. Da Rold, Solving the \( A_{FB}^b \) anomaly in natural composite models, JHEP 02 (2011) 034 [arXiv:1009.2392] [INSPIRE].

    Google Scholar 

  112. E. Alvarez, L. Da Rold and A. Szynkman, A composite Higgs model analysis of forward-backward asymmetries in the production of tops at Tevatron and bottoms at LEP and SLC, JHEP 05 (2011) 070 [arXiv:1011.6557] [INSPIRE].

    ADS  Google Scholar 

  113. R. Dermisek, S.-G. Kim and A. Raval, New vector boson near the Z-pole and the puzzle in precision electroweak data, Phys. Rev. D 84 (2011) 035006 [arXiv:1105.0773] [INSPIRE].

    ADS  Google Scholar 

  114. A. Djouadi, G. Moreau and F. Richard, Forward-backward asymmetries of the bottom and top quarks in warped extra-dimensional models: LHC predictions from the LEP and Tevatron anomalies, Phys. Lett. B 701 (2011) 458 [arXiv:1105.3158] [INSPIRE].

    ADS  Google Scholar 

  115. R. Dermisek, S.-G. Kim and A. Raval, Znear the Z-pole, Phys. Rev. D 85 (2012) 075022 [arXiv:1201.0315] [INSPIRE].

    ADS  Google Scholar 

  116. D. Guadagnoli and G. Isidori, B(B s μ + μ ) as an electroweak precision test, arXiv:1302.3909 [INSPIRE].

  117. K. Kumar, W. Shepherd, T.M. Tait and R. Vega-Morales, Beautiful mirrors at the LHC, JHEP 08 (2010) 052 [arXiv:1004.4895] [INSPIRE].

    ADS  Google Scholar 

  118. B. Batell, S. Gori and L.-T. Wang, Higgs couplings and precision electroweak data, JHEP 01 (2013) 139 [arXiv:1209.6382] [INSPIRE].

    ADS  Google Scholar 

  119. R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].

    ADS  Google Scholar 

  120. A. Falkowski, S. Rychkov and A. Urbano, What if the Higgs couplings to W and Z bosons are larger than in the standard model?, JHEP 04 (2012) 073 [arXiv:1202.1532] [INSPIRE].

    ADS  Google Scholar 

  121. A. Falkowski, F. Riva and A. Urbano, Higgs at last, arXiv:1303.1812 [INSPIRE].

  122. C. Grojean, O. Matsedonskyi and G. Panico, Light top partners and precision physics, arXiv:1306.4655 [INSPIRE].

  123. W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    ADS  Google Scholar 

  124. F. del Aguila and J. de Blas, Electroweak constraints on new physics, Fortsch. Phys. 59 (2011) 1036 [arXiv:1105.6103] [INSPIRE].

    ADS  Google Scholar 

  125. C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group scaling of Higgs operators and Γ(hγγ), JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  126. J. Elias-Miro, J. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays hγγ, γZ, JHEP 08 (2013) 033 [arXiv:1302.5661] [INSPIRE].

    ADS  Google Scholar 

  127. E.E. Jenkins, A.V. Manohar and M. Trott, On gauge invariance and minimal coupling, arXiv:1305.0017 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Mishima.

Additional information

ArXiv ePrint: 1306.4644

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciuchini, M., Franco, E., Mishima, S. et al. Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson. J. High Energ. Phys. 2013, 106 (2013). https://doi.org/10.1007/JHEP08(2013)106

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)106

Keywords