Abstract
In view of a potential interpretation of the role of the Mathieu group M 24 in the context of strings compactified on K3 surfaces, we develop techniques to combine groups of symmetries from different K3 surfaces to larger ‘overarching’ symmetry groups. We construct a bijection between the full integral homology lattice of K3 and the Niemeier lattice of type \( A_1^{24 } \), which is simultaneously compatible with the finite symplectic automorphism groups of all Kummer surfaces lying on an appropriate path in moduli space connecting the square and the tetrahedral Kummer surfaces. The Niemeier lattice serves to express all these symplectic automorphisms as elements of the Mathieu group M 24, generating the ‘overarching finite symmetry group’ \( {{\left( {{{\mathbb{Z}}_2}} \right)}^4} \) ⋊ A 7 of Kummer surfaces. This group has order 40320, thus surpassing the size of the largest finite symplectic automorphism group of a K3 surface by orders of magnitude. For every Kummer surface this group contains the group of symplectic automorphisms leaving the Kähler class invariant which is induced from the underlying torus. Our results are in line with the existence proofs of Mukai and Kondo, that finite groups of symplectic automorphisms of K3 are subgroups of one of eleven subgroups of M 23, and we extend their techniques of lattice embeddings for all Kummer surfaces with Kähler class induced from the underlying torus.
Similar content being viewed by others
References
T. Eguchi, H. Ooguri and Y. Tachikawa, Notes on the K3 Surface and the Mathieu group M 24, Exper. Math. 20 (2011) 91 [arXiv:1004.0956] [INSPIRE].
O. Alvarez, T. Killingback, M.L. Mangano and P. Windey, String theory and loop space index theorems, Commun. Math. Phys. 111 (1987) 1 [INSPIRE].
E. Witten, Elliptic genera and quantum field theory, Commun. Math. Phys. 109 (1987) 525 [INSPIRE].
T. Eguchi, H. Ooguri, A. Taormina and S.-K. Yang, Superconformal Algebras and String Compactification on Manifolds with SU(N) Holonomy, Nucl. Phys. B 315 (1989) 193 [INSPIRE].
M.C. Cheng, K3 Surfaces, N = 4 dyons and the Mathieu group M 24, Commun. Num. Theor. Phys. 4 (2010) 623 [arXiv:1005.5415] [INSPIRE].
M.R. Gaberdiel, S. Hohenegger and R. Volpato, Mathieu moonshine in the elliptic genus of K3, JHEP 10 (2010) 062 [arXiv:1008.3778] [INSPIRE].
M.R. Gaberdiel, S. Hohenegger and R. Volpato, Mathieu twining characters for K3, JHEP 09 (2010) 058 [arXiv:1006.0221] [INSPIRE].
S. Govindarajan, Brewing moonshine for Mathieu, arXiv:1012.5732 [INSPIRE].
S. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieur group, Invent. Math. 94 (1988) 183.
S. Kondo, Niemeier lattices, Mathieu groups and finite groups of symplectic automorphisms of K3 surfaces, appendix by S. Mukai, Duke Math. J. 92 (1998) 593.
V.V. Nikulin, Finite automorphism groups of Kaehler K3 surfaces, Trans. Mosc. Math. Soc. 38 (1980) 71.
V.V. Nikulin, Integral symmetric bilinear forms and some of their applications, Math. USSR Isv. 14 (1980) 103.
E. Witt, Eine Identität zwischen Modulformen zweiten Grades, Abh. Math. Sem. Hamburg 14 (1941) 323.
M. Kneser, Klassenzahlen definiter quadratischer Formen, Arch. Math. 8 (1957) 241.
M.R. Gaberdiel, S. Hohenegger and R. Volpato, Symmetries of K3 σ-models, Commun. Num. Theor. Phys. 6 (2012) 1 [arXiv:1106.4315] [INSPIRE].
D.R. Morrison, On K3 surfaces with large Picard number, Invent. Math. 75 (1984) 105.
J. Milnor, On simply connected 4-manifolds, in Symposium Internacional de Topologia Algebraica, La Universidad Nacional Autónoma de México y la UNESCO, Mexico (1958), pg. 122-128.
J.-P. Serre, Cours d’arithmétique. Collection SUP: ‘Le Mathématicien’. Vol. 2, Presses Universitaires de France, Paris (1970).
J. Milnor and D. Husemoller, Symmetric bilinear forms, Springer-Verlag, (1973).
H.V. Niemeier, Definite quadratische Formen der Dimension 24 und Diskriminante 1, J. Number Theory 5 (1973) 142.
I.I. Pjateckiĭ-Šapiro and I.R. Šafarevič, Torelli’s theorem for algebraic surfaces of type K3, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971) 530.
V.V. Nikulin, On Kummer surfaces, Math. USSR Isv. 9 (1975) 261.
K. Kodaira, On the structure of compact complex analytic surfaces, Am. J. Math. 86 (1964) 751.
I.R. Šafarevič, Algebraic surfaces, in Proceedings of the Steklov Institute of Mathematics, No. 75, K. Kodaira and D.C. Spencer eds., American Mathematical Society, Providence, R.I., (1965), pp. ix+281, Translated from Russian by Susan Walker.
J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, New York Berlin Heidelberg London Paris Tokyo, (1988).
V.V. Nikulin, Kählerian K3 surfaces and Niemeier lattices, arXiv:1109.2879.
J.A. Todd, On representations of the Mathieu groups as collineation groups, J. London Math. Soc. 34 (1959) 406.
J.A. Todd, A representation of the Mathieu group M 24 as a collineation group, Ann. Mat. Pura Appl. 71 (1966) 199.
J.H. Conway, Three lectures on exceptional groups, in Finite Simple Groups, Proceedings of an instructional conference organized by the London Mathematical Society (London and New York), M.B. Powell and G. Higman eds., Academic Press (1971).
C. Jordan, Traité des substitutions et des équations algébriques, Gauthier-Villars, Paris France (1870).
R.T. Curtis, Further elementary techniques using the miracle octad generator, Proc. Edinburgh Math. Soc. 32 (1989) 345.
V.S. Kulikov, Surjectivity of the period mapping for K3 surfaces, Uspehi Mat. Nauk 32 (1977) 257.
E. Looijenga, A Torelli theorem for Kähler-Einstein K3 surfaces, Lect. Notes Math. 894 (1981) 107.
Y. Namikawa, Surjectivity of period map for K3 surfaces, in Classification of algebraic and analytic manifolds (Katata, 1982), Vol. 39 of Progr. Math., Birkhäuser Boston, Boston, MA, U.S.A (1983), pg. 379-397.
Y.T. Siu, A simple proof of the surjectivity of the period map of K3 surfaces, Manuscripta Math. 35 (1981) 311.
A.N. Todorov, Applications of the Kähler-Einstein-Calabi-Yau metric to moduli of K3 surfaces, Invent. Math. 61 (1980) 251.
M.F. Atiyah, On analytic surfaces with double points, Proc. R. Soc. Lond. A247 (1958) 237.
T. Shioda and H. Inose, On singular K3 surfaces, in Complex Analysis and Algebraic Geometry, W.L. Bailey and T. Shioda eds., Cambridge University Press, (1977), pg. 119-136.
T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972) 20.
I.T. Todorov, How many Kähler metrics has a K3 surface?, in Arithmetic and Geometry: Papers dedicated to I.R. Shafarevich on the occasion of his sixtieth birthday. Vol. 2, Birkhäuser, (1983), pg. 451-463.
P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons, New York U.S.A. (1978).
P.S. Aspinwall and D.R. Morrison, String theory on K3 surfaces, hep-th/9404151 [INSPIRE].
W. Nahm and K. Wendland, A Hiker’s guide to K3: Aspects of N = (4,4) superconformal field theory with central charge c = 6, Commun. Math. Phys. 216 (2001) 85 [hep-th/9912067] [INSPIRE].
W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Springer-Verlag, (1984).
D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. No. 9 (1962) 5.
G. Xiao, Galois covers between K3 surfaces, Ann. Inst. Fourier (Grenoble) 46 (1996) 73.
G. Mason, Symplectic automorphisms of K3-Surfaces (after S. Mukai and V.V. Nikulin), CWI Newslett. 13 (1986) 3.
A. Fujiki, Finite automorphism groups of complex tori of dimension two, Publ. Res. Inst. Math. Sci. 24 (1988) 1.
R.T. Curtis, Symmetric generation of groups. Encyclopedia of Mathematics, Cambridge University Press, (2007).
K. Wendland, Moduli spaces of unitary conformal field theories, Ph.D. Thesis, University of Bonn, Bonn Germany (2000).
A. Taormina and K. Wendland, Symmetry-surfing the moduli space of Kummer K3s, arXiv:1303.2931 [INSPIRE].
R.T. Curtis, A new combinatorial approach to M 24, Math. Proc. Cambridge 79 (1976) 25.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Taormina, A., Wendland, K. The overarching finite symmetry group of Kummer surfaces in the Mathieu group M 24 . J. High Energ. Phys. 2013, 125 (2013). https://doi.org/10.1007/JHEP08(2013)125
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2013)125