Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The overarching finite symmetry group of Kummer surfaces in the Mathieu group M 24

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In view of a potential interpretation of the role of the Mathieu group M 24 in the context of strings compactified on K3 surfaces, we develop techniques to combine groups of symmetries from different K3 surfaces to larger ‘overarching’ symmetry groups. We construct a bijection between the full integral homology lattice of K3 and the Niemeier lattice of type \( A_1^{24 } \), which is simultaneously compatible with the finite symplectic automorphism groups of all Kummer surfaces lying on an appropriate path in moduli space connecting the square and the tetrahedral Kummer surfaces. The Niemeier lattice serves to express all these symplectic automorphisms as elements of the Mathieu group M 24, generating the ‘overarching finite symmetry group’ \( {{\left( {{{\mathbb{Z}}_2}} \right)}^4} \)A 7 of Kummer surfaces. This group has order 40320, thus surpassing the size of the largest finite symplectic automorphism group of a K3 surface by orders of magnitude. For every Kummer surface this group contains the group of symplectic automorphisms leaving the Kähler class invariant which is induced from the underlying torus. Our results are in line with the existence proofs of Mukai and Kondo, that finite groups of symplectic automorphisms of K3 are subgroups of one of eleven subgroups of M 23, and we extend their techniques of lattice embeddings for all Kummer surfaces with Kähler class induced from the underlying torus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Eguchi, H. Ooguri and Y. Tachikawa, Notes on the K3 Surface and the Mathieu group M 24, Exper. Math. 20 (2011) 91 [arXiv:1004.0956] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  2. O. Alvarez, T. Killingback, M.L. Mangano and P. Windey, String theory and loop space index theorems, Commun. Math. Phys. 111 (1987) 1 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. E. Witten, Elliptic genera and quantum field theory, Commun. Math. Phys. 109 (1987) 525 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. T. Eguchi, H. Ooguri, A. Taormina and S.-K. Yang, Superconformal Algebras and String Compactification on Manifolds with SU(N) Holonomy, Nucl. Phys. B 315 (1989) 193 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. M.C. Cheng, K3 Surfaces, N = 4 dyons and the Mathieu group M 24, Commun. Num. Theor. Phys. 4 (2010) 623 [arXiv:1005.5415] [INSPIRE].

    Article  MATH  Google Scholar 

  6. M.R. Gaberdiel, S. Hohenegger and R. Volpato, Mathieu moonshine in the elliptic genus of K3, JHEP 10 (2010) 062 [arXiv:1008.3778] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. M.R. Gaberdiel, S. Hohenegger and R. Volpato, Mathieu twining characters for K3, JHEP 09 (2010) 058 [arXiv:1006.0221] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. S. Govindarajan, Brewing moonshine for Mathieu, arXiv:1012.5732 [INSPIRE].

  9. S. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieur group, Invent. Math. 94 (1988) 183.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. S. Kondo, Niemeier lattices, Mathieu groups and finite groups of symplectic automorphisms of K3 surfaces, appendix by S. Mukai, Duke Math. J. 92 (1998) 593.

  11. V.V. Nikulin, Finite automorphism groups of Kaehler K3 surfaces, Trans. Mosc. Math. Soc. 38 (1980) 71.

    Google Scholar 

  12. V.V. Nikulin, Integral symmetric bilinear forms and some of their applications, Math. USSR Isv. 14 (1980) 103.

    Article  MATH  Google Scholar 

  13. E. Witt, Eine Identität zwischen Modulformen zweiten Grades, Abh. Math. Sem. Hamburg 14 (1941) 323.

    Article  Google Scholar 

  14. M. Kneser, Klassenzahlen definiter quadratischer Formen, Arch. Math. 8 (1957) 241.

    Article  MathSciNet  MATH  Google Scholar 

  15. M.R. Gaberdiel, S. Hohenegger and R. Volpato, Symmetries of K3 σ-models, Commun. Num. Theor. Phys. 6 (2012) 1 [arXiv:1106.4315] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  16. D.R. Morrison, On K3 surfaces with large Picard number, Invent. Math. 75 (1984) 105.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. J. Milnor, On simply connected 4-manifolds, in Symposium Internacional de Topologia Algebraica, La Universidad Nacional Autónoma de México y la UNESCO, Mexico (1958), pg. 122-128.

  18. J.-P. Serre, Cours darithmétique. Collection SUP:Le Mathématicien. Vol. 2, Presses Universitaires de France, Paris (1970).

    Google Scholar 

  19. J. Milnor and D. Husemoller, Symmetric bilinear forms, Springer-Verlag, (1973).

  20. H.V. Niemeier, Definite quadratische Formen der Dimension 24 und Diskriminante 1, J. Number Theory 5 (1973) 142.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. I.I. Pjateckiĭ-Šapiro and I.R. Šafarevič, Torellis theorem for algebraic surfaces of type K3, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971) 530.

    MathSciNet  Google Scholar 

  22. V.V. Nikulin, On Kummer surfaces, Math. USSR Isv. 9 (1975) 261.

    Article  Google Scholar 

  23. K. Kodaira, On the structure of compact complex analytic surfaces, Am. J. Math. 86 (1964) 751.

    Article  MathSciNet  MATH  Google Scholar 

  24. I.R. Šafarevič, Algebraic surfaces, in Proceedings of the Steklov Institute of Mathematics, No. 75, K. Kodaira and D.C. Spencer eds., American Mathematical Society, Providence, R.I., (1965), pp. ix+281, Translated from Russian by Susan Walker.

  25. J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, New York Berlin Heidelberg London Paris Tokyo, (1988).

    Book  MATH  Google Scholar 

  26. V.V. Nikulin, Kählerian K3 surfaces and Niemeier lattices, arXiv:1109.2879.

  27. J.A. Todd, On representations of the Mathieu groups as collineation groups, J. London Math. Soc. 34 (1959) 406.

    Article  MathSciNet  MATH  Google Scholar 

  28. J.A. Todd, A representation of the Mathieu group M 24 as a collineation group, Ann. Mat. Pura Appl. 71 (1966) 199.

    Article  MathSciNet  MATH  Google Scholar 

  29. J.H. Conway, Three lectures on exceptional groups, in Finite Simple Groups, Proceedings of an instructional conference organized by the London Mathematical Society (London and New York), M.B. Powell and G. Higman eds., Academic Press (1971).

  30. C. Jordan, Traité des substitutions et des équations algébriques, Gauthier-Villars, Paris France (1870).

    Google Scholar 

  31. R.T. Curtis, Further elementary techniques using the miracle octad generator, Proc. Edinburgh Math. Soc. 32 (1989) 345.

    Article  MathSciNet  MATH  Google Scholar 

  32. V.S. Kulikov, Surjectivity of the period mapping for K3 surfaces, Uspehi Mat. Nauk 32 (1977) 257.

    MathSciNet  MATH  Google Scholar 

  33. E. Looijenga, A Torelli theorem for Kähler-Einstein K3 surfaces, Lect. Notes Math. 894 (1981) 107.

    Article  MathSciNet  Google Scholar 

  34. Y. Namikawa, Surjectivity of period map for K3 surfaces, in Classification of algebraic and analytic manifolds (Katata, 1982), Vol. 39 of Progr. Math., Birkhäuser Boston, Boston, MA, U.S.A (1983), pg. 379-397.

  35. Y.T. Siu, A simple proof of the surjectivity of the period map of K3 surfaces, Manuscripta Math. 35 (1981) 311.

    Article  MathSciNet  MATH  Google Scholar 

  36. A.N. Todorov, Applications of the Kähler-Einstein-Calabi-Yau metric to moduli of K3 surfaces, Invent. Math. 61 (1980) 251.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. M.F. Atiyah, On analytic surfaces with double points, Proc. R. Soc. Lond. A247 (1958) 237.

    Article  MathSciNet  ADS  Google Scholar 

  38. T. Shioda and H. Inose, On singular K3 surfaces, in Complex Analysis and Algebraic Geometry, W.L. Bailey and T. Shioda eds., Cambridge University Press, (1977), pg. 119-136.

  39. T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972) 20.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. I.T. Todorov, How many Kähler metrics has a K3 surface?, in Arithmetic and Geometry: Papers dedicated to I.R. Shafarevich on the occasion of his sixtieth birthday. Vol. 2, Birkhäuser, (1983), pg. 451-463.

  41. P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons, New York U.S.A. (1978).

    MATH  Google Scholar 

  42. P.S. Aspinwall and D.R. Morrison, String theory on K3 surfaces, hep-th/9404151 [INSPIRE].

  43. W. Nahm and K. Wendland, A Hikers guide to K3: Aspects of N = (4,4) superconformal field theory with central charge c = 6, Commun. Math. Phys. 216 (2001) 85 [hep-th/9912067] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Springer-Verlag, (1984).

  45. D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. No. 9 (1962) 5.

    Article  Google Scholar 

  46. G. Xiao, Galois covers between K3 surfaces, Ann. Inst. Fourier (Grenoble) 46 (1996) 73.

    Article  MathSciNet  MATH  Google Scholar 

  47. G. Mason, Symplectic automorphisms of K3-Surfaces (after S. Mukai and V.V. Nikulin), CWI Newslett. 13 (1986) 3.

    MATH  Google Scholar 

  48. A. Fujiki, Finite automorphism groups of complex tori of dimension two, Publ. Res. Inst. Math. Sci. 24 (1988) 1.

    Article  MathSciNet  MATH  Google Scholar 

  49. R.T. Curtis, Symmetric generation of groups. Encyclopedia of Mathematics, Cambridge University Press, (2007).

  50. K. Wendland, Moduli spaces of unitary conformal field theories, Ph.D. Thesis, University of Bonn, Bonn Germany (2000).

  51. A. Taormina and K. Wendland, Symmetry-surfing the moduli space of Kummer K3s, arXiv:1303.2931 [INSPIRE].

  52. R.T. Curtis, A new combinatorial approach to M 24, Math. Proc. Cambridge 79 (1976) 25.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Taormina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taormina, A., Wendland, K. The overarching finite symmetry group of Kummer surfaces in the Mathieu group M 24 . J. High Energ. Phys. 2013, 125 (2013). https://doi.org/10.1007/JHEP08(2013)125

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)125

Keywords