Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A 1-Year Follow-Up of Post-operative Scars After the Use of a 1210-nm Laser-Assisted Skin Healing (LASH) Technology: A Randomized Controlled Trial

  • Original Article
  • Non-Surgical Aesthetic
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Laser therapies are used prophylactically for excessive scar formation. The Laser-Assisted Skin Healing treatment induces a controlled heat stress that promotes tissue regeneration. This comparative trial is the first to evaluate the performance of a new automated 1210-nm laser system, compatible with all Fitzpatrick scale phototypes.

Methods

Forty women undergoing bilateral breast reduction were enrolled in this double-blinded randomized controlled trial. The horizontal sutured incision of one breast was treated with the portable 1210-nm laser while in the operating theatre. The other breast was used as the study control. Objective measurements, subjective clinical assessments and safety evaluation were carried out over 1 year by both clinicians and patients.

Results

Six weeks following surgery, better overall appearance and modified OSAS scores were reported for the laser-treated scars when compared to the control group (p = 0.024 and p = 0.079). This supports an early effect of the laser treatment during the inflammatory stage of the healing process. After a post-treatment period of 6 months, there continued to be a strong tendency in favour of the laser treatment based on the subjective scores and corroborated by the objective improvement of the treated scar volume (p = 0.038). At 1 year, the laser-treated scars continued to improve compared to the control ones in terms of volume (p = 0.004), surface (p = 0.017) and roughness (p = 0.002), and these comparatively better results were strengthened with the blind expression of patients’ preference for their laser-treated scar (p = 0.025).

Conclusions

This new 1210-nm laser treatment, used as a single session performed immediately after surgery, provides significant objective and subjective improvements in scar appearance. These data can be useful when preparing patients to undergo their surgical procedure.

Level of Evidence I

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Weiser TG, Haynes AB, Molina G, Lipsitz SR, Esquivel MM, Uribe-Leitz T, Fu R, Azad T, Chao TE, Berry WR, Gawande AA (2016) Size and distribution of the global volume of surgery in 2012. Bull World Health Organ 94(3):201–209F

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321

    Article  CAS  PubMed  Google Scholar 

  3. Gauglitz GG (2013) Management of keloids and hypertrophic scars: current and emerging options. Clin Cosmet Investig Dermatol 24(6):103–114

    Article  Google Scholar 

  4. Son D, Harijan A (2014) Overview of surgical scar prevention and management. J Korean Med Sci 29:751–757

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG (2011) Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med 17(1–2):113–125

    CAS  PubMed  Google Scholar 

  6. Soltani AM, Francis CS, Motamed A, Karatsonyi AL, Hammoudeh JA, Sanchez-Lara PA, Reinisch JF, Urata MM (2012) Hypertrophic scarring in cleft lip repair: a comparison of incidence among ethnic groups. Clin Epidemiol 4:187–191

    PubMed  PubMed Central  Google Scholar 

  7. McCurdy JA Jr (2007) Considerations in Asian cosmetic surgery. Facial Plast Surg Clin North Am 15:387–397, vii

    Article  PubMed  Google Scholar 

  8. Gold MH, Berman B, Clementoni MT, Gauglitz GG, Nahai F, Murcia C (2014) Updated international clinical recommendations on scar management: part 1—evaluating the evidence. Dermatol Surg 40(8):817–824

    CAS  PubMed  Google Scholar 

  9. Gold MH, McGuire M, Mustoe TA, Pusic A, Sachdev M, Waibel J, Murcia C (2014) International Advisory Panel on Scar Management. Updated international clinical recommendations on scar management: part 2—algorithms for scar prevention and treatment. Dermatol Surg 40(8):825–831

    CAS  PubMed  Google Scholar 

  10. Kim S, Choi TH, Liu W, Ogawa R, Suh JS, Mustoe TA (2013) Update on scar management: guidelines for treating Asian patients. Plast Reconstr Surg 132(6):1580–1589

    Article  CAS  PubMed  Google Scholar 

  11. Meaume S, Le Pillouer-Prost A, Richert B, Roseeuw D, Vadoud J (2014) Management of scars: updated practical guidelines and use of silicones. Eur J Dermatol 24(4):435–443

    PubMed  Google Scholar 

  12. Monstrey S, Middelkoop E, Vranckx JJ, Bassetto F, Ziegler UE, Meaume S, Téot L (2014) Updated scar management practical guidelines: non-invasive and invasive measures. J Plast Reconstr Aesthet Surg 67(8):1017–1025

    Article  PubMed  Google Scholar 

  13. Arno AI, Gauglitz GG, Barret JP, Jeschke MG (2014) Up-to-date approach to manage keloids and hypertrophic scars: a useful guide. Burns 40(7):1255–1266

    Article  PubMed  PubMed Central  Google Scholar 

  14. Richter AL, Barrera J, Markus RF, Brissett A (2014) Laser skin treatment in non-Caucasian patients. Facial Plast Surg Clin North Am 22(3):439–446

    Article  PubMed  Google Scholar 

  15. Alexis AF (2013) Lasers and light-based therapies in ethnic skin: treatment options and recommendations for Fitzpatrick skin V and VI. Br J Dermatol 169(3):91–97

    Article  PubMed  Google Scholar 

  16. Capon AC, Gossé AR, Iarmarcovai GN, Cornil AH, Mordon SR (2008) Scar prevention by laser-assisted scar healing (LASH): a pilot study using an 810-nm diode-laser system. Lasers Surg Med 40(7):443–445

    Article  PubMed  Google Scholar 

  17. Souil E, Capon A, Mordon S, Dinh-Xuan AT, Polla BS, Bachelet M (2001) Treatment with 815-nm diode laser induces long-lasting expression of 72-kDa heat shock protein in normal rat skin. Br J Dermatol 144(2):260–266

    Article  CAS  PubMed  Google Scholar 

  18. Leclere FM, Mordon SR (2010) Twenty-five years of active laser prevention of scars: what have we learned? J Cosmet Laser Ther 12(5):227–234

    Article  CAS  PubMed  Google Scholar 

  19. Chen Y, Voegeli TS, Liu PP, Noble EG, Currie RW (2007) Heat shock paradox and a new role of heat shock proteins and their receptors as anti-inflammation targets. Inflamm Allergy Drug Targets 6(2):91–100

    Article  CAS  PubMed  Google Scholar 

  20. Capon A, Iarmarcovai G, Gonnelli D, Degardin N, Magalon G, Mordon S (2010) Scar prevention using Laser-Assisted Skin Healing (LASH) in plastic surgery. Aesthet Plast Surg 34(4):438–446

    Article  Google Scholar 

  21. Nipshagen MD, Hage JJ, Beekman WH (2008) Use of 2-octyl-cyanoacrylate skin adhesive (Dermabond) for wound closure following reduction mammaplasty: a prospective, randomized intervention study. Plast Reconstr Surg 122(1):10–18

    Article  CAS  PubMed  Google Scholar 

  22. Truong PT, Lee JC, Soer B, Gaul CA, Olivotto IA (2007) Reliability and validity testing of the Patient and Observer Scar Assessment Scale in evaluating linear scars after breast cancer surgery. Plast Reconstr Surg 119(2):487–494

    Article  CAS  PubMed  Google Scholar 

  23. Draaijers LJ, Tempelman FR, Botman YA, Tuinebreijer WE, Middelkoop E, Kreis RW, van Zuijlen PP (2004) The patient and observer scar assessment scale: a reliable and feasible tool for scar evaluation. Plast Reconstr Surg 113(7):1960–1965 (discussion 1966–1967)

    Article  PubMed  Google Scholar 

  24. Stekelenburg CM, van der Wal MB, Knol DL, de Vet HC, van Zuijlen PP (2013) Three-dimensional digital stereophotogrammetry: a reliable and valid technique for measuring scar surface area. Plast Reconstr Surg 132(1):204–211

    Article  CAS  PubMed  Google Scholar 

  25. Lumenta DB, Kitzinger HB, Selig H, Kamolz LP (2011) Objective quantification of subjective parameters in scars by use of a portable stereophotographic system. Ann Plast Surg 67(6):641–645

    Article  CAS  PubMed  Google Scholar 

  26. Jin R, Huang X, Li H, Yuan Y, Li B, Cheng C, Li Q (2013) Laser therapy for prevention and treatment of pathologic excessive scars. Plast Reconstr Surg 132(6):1747–1758

    Article  CAS  PubMed  Google Scholar 

  27. Nouri K, Jimenez GP, Harrison-Balestra C, Elgart GW (2003) 585-nm pulsed dye laser in the treatment of surgical scars starting on the suture removal day. Dermatol Surg 29(1):65–73

    PubMed  Google Scholar 

  28. Chan HH, Wong DS, Ho WS, Lam LK, Wei W (2004) The use of pulsed dye laser for the prevention and treatment of hypertrophic scars in Chinese persons. Dermatol Surg 30(7):987–994

    PubMed  Google Scholar 

  29. Nouri K, Rivas MP, Stevens M, Ballard CJ, Singer L, Ma F, Vejjabhinanta V, Elsaie ML, Elgart GW (2009) Comparison of the effectiveness of the pulsed dye laser 585-nm versus 595-nm in the treatment of new surgical scars. Lasers Med Sci 24(5):801–810

    Article  PubMed  Google Scholar 

  30. Nouri K, Elsaie ML, Vejjabhinanta V, Stevens M, Patel SS, Caperton C, Elgart G (2010) Comparison of the effects of short- and long-pulse durations when using a 585-nm pulsed dye laser in the treatment of new surgical scars. Lasers Med Sci 25(1):121–126

    Article  PubMed  Google Scholar 

  31. Conologue TD, Norwood C (2006) Treatment of surgical scars with the cryogen-cooled 595-nm pulsed dye laser starting on the day of suture removal. Dermatol Surg 32(1):13–20

    Article  CAS  PubMed  Google Scholar 

  32. Alam M, Pon K, Van Laborde S, Kaminer MS, Arndt KA, Dover JS (2006) Clinical effect of a single pulsed dye laser treatment of fresh surgical scars: randomized controlled trial. Dermatol Surg 32(1):21–25

    Article  CAS  PubMed  Google Scholar 

  33. Tierney E, Mahmoud BH, Srivastava D, Ozog D, Kouba DJ (2009) Treatment of surgical scars with nonablative fractional laser versus pulsed dye laser: a randomized controlled trial. Dermatol Surg 35(8):1172–1180

    Article  CAS  PubMed  Google Scholar 

  34. Gladsjo JA, Jiang SI (2014) Treatment of surgical scars using a 595-nm pulsed dye laser using purpuric and non-purpuric parameters: a comparative study. Dermatol Surg 40(2):118–126

    Article  CAS  PubMed  Google Scholar 

  35. Ha JM, Kim HS, Cho EB, Park GH, Park EJ, Kim KH, Kim LS, Kim KJ (2014) Comparison of the effectiveness of Nonablative Fractional Laser versus Pulsed-Dye Laser in Thyroidectomy Scar Prevention. Ann Dermatol 26(5):615–620

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yun JS, Choi YJ, Kim WS, Lee GY (2011) Prevention of thyroidectomy scars in Asian adults using a 532-nm potassium titanyl phosphate laser. Dermatol Surg 37(12):1747–1753

    Article  CAS  PubMed  Google Scholar 

  37. Tenzel PA, Patel K, Erickson BP, Shriver EM, Grunebaum LD, Alabiad CR, Lee WW, Wester ST (2016) Split face evaluation of long-pulsed non-ablative 1,064 nm Nd:YAG laser for treatment of direct browplasty scars. Lasers Surg Med 48(8):742–747

    Article  PubMed  Google Scholar 

  38. Choe JH, Park YL, Kim BJ, Kim MN, Rho NK, Park BS, Choi YJ, Kim KJ, Kim WS (2009) Prevention of thyroidectomy scar using a new 1,550-nm fractional erbium-glass laser. Dermatol Surg 35(8):1199–1205

    Article  CAS  PubMed  Google Scholar 

  39. Kim HS, Lee JH, Park YM, Lee JY (2012) Comparison of the effectiveness of nonablative fractional laser versus ablative fractional laser in thyroidectomy scar prevention: a pilot study. J Cosmet Laser Ther 14(2):89–93

    Article  PubMed  Google Scholar 

  40. Ozog DM, Moy RL (2011) A randomized split-scar study of intraoperative treatment of surgical wound edges to minimize scarring. Arch Dermatol 147(9):1108–1110

    Article  PubMed  Google Scholar 

  41. Jung JY, Jeong JJ, Roh HJ, Cho SH, Chung KY, Lee WJ, Nam KH, Chung WY, Lee JH (2011) Early postoperative treatment of thyroidectomy scars using a fractional carbon dioxide laser. Dermatol Surg 37(2):217–223

    Article  CAS  PubMed  Google Scholar 

  42. Leclère FM, Magalon G, Philandrianos C, Unglaub F, Servell P, Mordon S (2012) Prospective ex vivo study on thermal effects in human skin phototypes II, IV and VI: a comparison between the 808, 1064, 1210 and 1320-nm diode laser. J Cosmet Laser Ther 14(1):7–13

    Article  PubMed  Google Scholar 

  43. Mordon S, Capon A, Fournier N, Iarmarcovai G (2010) Thermal lasers and skin cicatrization. Med Sci (Paris) 26(1):89–94

    Article  Google Scholar 

  44. Lee KC, Dretzke J, Grover L, Logan A, Moiemen N (2016) A systematic review of objective burn scar measurements. Burns Trauma. doi:10.1186/s41038-016-0036-x

    PubMed  PubMed Central  Google Scholar 

  45. Ferriero G, Di Carlo S, Ferriero A, Salgovic L, Bravini E, Sartorio F, Vercelli S (2015) Post-surgical scar assessment in rehabilitation: a systematic review. Phys Ther Rehabil. doi:10.7243/2055-2386-2-2

    Google Scholar 

  46. Vercelli S, Ferriero G, Sartorio F, Cisari C, Bravini E (2015) Clinimetric properties and clinical utility in rehabilitation of postsurgical scar rating scales: a systematic review. Int J Rehabil Res 38(4):279–286

    Article  PubMed  Google Scholar 

  47. Brusselaers N, Pirayesh A, Hoeksema H, Verbelen J, Blot S, Monstrey S (2010) Burn scar assessment: a systematic review of different scar scales. J Surg Res 164(1):e115–e123. doi:10.1016/j.jss.2010.05.056

    Article  PubMed  Google Scholar 

  48. Kaartinen IS, Välisuo PO, Bochko V, Alander JT, Kuokkanen HO (2011) How to assess scar hypertrophy—a comparison of subjective scales and spectrocutometry: a new objective method. Wound Repair Regen 19(3):316–323

    Article  PubMed  Google Scholar 

  49. Kaartinen IS, Välisuo PO, Alander JT, Kuokkanen HO (2011) Objective scar assessment—a new method using standardized digital imaging and spectral modelling. Burns 37(1):74–81

    Article  PubMed  Google Scholar 

  50. Gankande TU, Duke JM, Danielsen PL, DeJong HM, Wood FM, Wallace HJ (2014) Reliability of scar assessments performed with an integrated skin testing device—the DermaLab Combo(®). Burns 40(8):1521–1529

    Article  CAS  PubMed  Google Scholar 

  51. Ud-Din S, Bayat A (2016) Non-invasive objective devices for monitoring the inflammatory, proliferative and remodelling phases of cutaneous wound healing and skin scarring. Exp Dermatol 25(8):579–585

    Article  CAS  PubMed  Google Scholar 

  52. Godwin Y, Wood SH, O’Neill TJ (1998) A comparison of the patient and surgeon opinion on the long-term aesthetic outcome of reduction mammaplasty. Br J Plast Surg 51(6):444–449

    Article  CAS  PubMed  Google Scholar 

  53. Godwin Y, Barron EJ, Edmunds MC, Meyer M, Bardsley A, Logan AM, O’Neill TJ, Wood SH (2014) A comparison of the patient and surgeon opinion on the long-term aesthetic outcome of reduction mammaplasty: have we improved over 15 years? J Plast Reconstr Aesthet Surg 67(7):932–938

    Article  CAS  PubMed  Google Scholar 

  54. Celebiler O, Sönmez A, Erdim M, Yaman M, Numanoğlu A (2005) Patients’ and surgeons’ perspectives on the scar components after inferior pedicle breast reduction surgery. Plast Reconstr Surg 116(2):459–464

    Article  CAS  PubMed  Google Scholar 

  55. Bond JS, Duncan JA, Mason T, Sattar A, Boanas A, O’Kane S, Ferguson MW (2008) Scar redness in humans: how long does it persist after incisional and excisional wounding? Plast Reconstr Surg 121(2):487–496

    Article  CAS  PubMed  Google Scholar 

  56. Choi Y, Lee JH, Kim YH, Lee YS, Chang HS, Park CS, Roh MR (2014) Impact of post-thyroidectomy scar on the quality of life of thyroid cancer patients. Ann Dermatol 26(6):693–699

    Article  PubMed  PubMed Central  Google Scholar 

  57. Young V, Hutchison J (2009) Insights into patient and clinician concerns about scar appearance: semiquantitative structured surveys. Plast Reconstr Surg 124:256–265

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Pr G. Magalon, M.D. for his input in the study protocol design, Pr S. Mordon, Ph.D. and A. Capon, M.D. for their former involvement in the assessment of the LASH technique and A. Le Pillouer-Prost, M.D. for her helpful contribution to the literature review required for this publication.

Funding

This trial was financially supported by the sponsor, Laboratoires URGO (Chenôve, France), manufacturer of the laser device.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bohbot.

Ethics declarations

Conflicts of interest

Z. Lemdjadi and S. Bohbot are employees of Laboratoires Urgo. Pr. D. Casanova and A. Alliez have received a speaker honorarium from the sponsor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casanova, D., Alliez, A., Baptista, C. et al. A 1-Year Follow-Up of Post-operative Scars After the Use of a 1210-nm Laser-Assisted Skin Healing (LASH) Technology: A Randomized Controlled Trial. Aesth Plast Surg 41, 938–948 (2017). https://doi.org/10.1007/s00266-017-0820-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-017-0820-4

Keywords