Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Targeting histone deacetylase 1 (HDAC1) in the bone marrow stromal cells revers imatinib resistance by modulating IL-6 in Ph + acute lymphoblastic leukemia

  • Research
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Bone marrow stromal cells (BMSCs) can promote the growth of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). Histone deacetylases (HDACs) play essential roles in the proliferation and apoptosis resistance of Ph + ALL cells. In our previous study, inhibiting histone deacetylase 1 (HDAC1) decreases the proliferation of Ph + ALL cells. However, little is known regarding how HDAC1 in BMSCs of Ph + ALL patients affects the imatinib (IM) resistance. Therefore, the present work examined the roles of HDAC1 in BMSCs. Overexpression of HDAC1 was found in BMSCs of Ph + ALL patients with IM resistance. In addition, the Ph + ALL cell line SUP-B15 was co-cultured with BMSCs after lentivirus transfection for regulating HDAC1 expression. Knockdown of HDAC1 within BMSCs elevated the IM-mediated SUP-B15 cell apoptosis, while increasing HDAC1 expression had an opposite effect. IL-6 in BMSCs, which is an important factor for the microenvironment-associated chemoresistance, showed evident up-regulation in HDAC1-upregulated BMSCs and down-regulation in HDAC1-downregulated BMSCs. While recombinant IL-6 (rIL-6) can reversed the sensitivity of SUP-B15 cells to IM induced by downregulating HDAC1 expression in BMSCs. HDAC1 showed positive regulation on IL-6 transcription and secretion. Moreover, IL-6 secretion induced by HDAC1 in BMSCs might enhance IM resistance in Ph + ALL cells. With regard to the underlying molecular mechanism, NF-κB, an important signal responsible for IL-6 transcription in BMSCs, mediated the HDAC1-regulated IL-6 expression. Collectively, this study facilitated to develop HDAC1 inhibitors based not only the corresponding direct anti-Ph + ALL activity but also the regulation of bone marrow microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article. The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

References

  1. Faderl S, Jeha S, Kantarjian HM (2003) The biology and therapy of adult acute lymphoblastic leukemia. Cancer 98:1337–1354

    Article  PubMed  Google Scholar 

  2. Thomas DA (2007) Philadelphia chromosome positive acute lymphocytic leukemia: a new era of challenges, Hematology. American Society of Hematology. Educ Program, 435–443

  3. Thomas X, Heiblig M (2016) Diagnostic and treatment of adult Philadelphia chromosome-positive acute lymphoblastic leukemia. Int J Hematologic Oncol 5:77–90

    Article  CAS  Google Scholar 

  4. Koo HH (2011) Philadelphia chromosome-positive acute lymphoblastic leukemia in childhood. Korean J Pediatr 54:106–110

    Article  PubMed  PubMed Central  Google Scholar 

  5. Trela E, Glowacki S, Błasiak J (2014) Therapy of chronic myeloid leukemia: twilight of the imatinib era? ISRN oncology, 596483

  6. Thielen N, Ossenkoppele GJ, Schuurhuis GJ, Janssen JJ (2011) New insights into the pathogenesis of chronic myeloid leukaemia: towards a path to cure. Neth J Med 69:430–440

    CAS  PubMed  Google Scholar 

  7. Bixby D, Talpaz M (2011) Seeking the causes and solutions to imatinib-resistance in chronic myeloid leukemia. Leukemia 25:7–22

    Article  CAS  PubMed  Google Scholar 

  8. Cortes JE, Egorin MJ, Guilhot F, Molimard M, Mahon FX (2009) Pharmacokinetic/pharmacodynamic correlation and blood-level testing in imatinib therapy for chronic myeloid leukemia. Leukemia 23:1537–1544

    Article  CAS  PubMed  Google Scholar 

  9. Azizidoost S, Babashah S, Rahim F, Shahjahani M, Saki N (2014) Bone marrow neoplastic niche in leukemia. Hematol (Amsterdam Netherlands) 19:232–238

    CAS  Google Scholar 

  10. Tabe Y, Konopleva M (2014) Advances in understanding the leukaemia microenvironment. Br J Haematol 164:767–778

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nwajei F, Konopleva M (2013) The bone marrow microenvironment as niche retreats for hematopoietic and leukemic stem cells. Adv Hematol 2013:953982

    Article  PubMed  PubMed Central  Google Scholar 

  12. Quintarelli C, De Angelis B, Errichiello S, Caruso S, Esposito N, Colavita I, Raia M, Pagliuca S, Pugliese N, Risitano AM, Picardi M, Luciano L, Saglio G, Martinelli G, Pane F (2014) Selective strong synergism of Ruxolitinib and second generation tyrosine kinase inhibitors to overcome bone marrow stroma related drug resistance in chronic myelogenous leukemia. Leuk Res 38:236–242

    Article  CAS  PubMed  Google Scholar 

  13. Zhang B, Li M, McDonald T, Holyoake TL, Moon RT, Campana D, Shultz L, Bhatia R (2013) Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt-β-catenin signaling. Blood 121:1824–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu P, Ma D, Yu Z, Zhe N, Ren M, Wang P, Yu M, Huang J, Fang Q, Wang J (2017) Overexpression of heme oxygenase-1 in bone marrow stromal cells promotes microenvironment-mediated imatinib resistance in chronic myeloid leukemia, vol 91. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, pp 21–30

  15. Zhang C, Zhang X, Yang SJ, Chen XH (2017) Growth of tyrosine kinase inhibitor-resistant Philadelphia-positive acute lymphoblastic leukemia: role of bone marrow stromal cells. Oncol Lett 13:2059–2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mehrpouri M, Pourbagheri-Sigaroodi A, Bashash D (2021) The contributory roles of histone deacetylases (HDACs) in hematopoiesis regulation and possibilities for pharmacologic interventions in hematologic malignancies. Int Immunopharmacol 100:108114

    Article  CAS  PubMed  Google Scholar 

  17. Wang P, Wang Z, Liu J (2020) Role of HDACs in normal and malignant hematopoiesis. Mol Cancer 19:5

    Article  PubMed  PubMed Central  Google Scholar 

  18. Eryılmaz E, Canpolat C (2017) Novel agents for the treatment of childhood leukemia: an update. OncoTargets Therapy 10:3299–3306

    Article  PubMed  PubMed Central  Google Scholar 

  19. Melnick A, Licht JD (2002) Histone deacetylases as therapeutic targets in hematologic malignancies. Curr Opin Hematol 9:322–332

    Article  PubMed  Google Scholar 

  20. Yang L, Qiu Q, Tang M, Wang F, Yi Y, Yi D, Yang Z, Zhu Z, Zheng S, Yang J, Pei H, Zheng L, Chen Y, Gou L, Luo L, Deng X, Ye H, Hu Y, Niu T, Chen L (2019) Purinostat Mesylate is a uniquely potent and selective inhibitor of HDACs for the treatment of BCR-ABL-Induced B-Cell Acute Lymphoblastic Leukemia, clinical cancer research: an official journal of the American Association for Cancer Research. 25:7527–7539

  21. Mehrpouri M, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, Momeny M, Bashash D (2020) Anti-leukemic effects of histone deacetylase (HDAC) inhibition in acute lymphoblastic leukemia (ALL) cells: shedding light on mitigating effects of NF-κB and autophagy on panobinostat cytotoxicity. Eur J Pharmacol 875:173050

    Article  CAS  PubMed  Google Scholar 

  22. Stubbs MC, Kim W, Bariteau M, Davis T, Vempati S, Minehart J, Witkin M, Qi J, Krivtsov AV, Bradner JE, Kung AL, Armstrong SA (2015) Selective inhibition of HDAC1 and HDAC2 as a potential therapeutic option for B-ALL, clinical cancer research: an official journal of the American Association for Cancer Research. 21:2348–2358

  23. Ho M, Chen T, Liu J, Dowling P, Hideshima T, Zhang L, Morelli E, Camci-Unal G, Wu X, Tai YT, Wen K, Samur M, Schlossman RL, Mazitschek R, Kavanagh EL, Lindsay S, Harada T, McCann A, Anderson KC, O’Gorman P (2020) Bianchi, Targeting histone deacetylase 3 (HDAC3) in the bone marrow microenvironment inhibits multiple myeloma proliferation by modulating exosomes and IL-6 trans-signaling. Leukemia 34:196–209

    Article  CAS  PubMed  Google Scholar 

  24. Minami J, Suzuki R, Mazitschek R, Gorgun G, Ghosh B, Cirstea D, Hu Y, Mimura N, Ohguchi H, Cottini F, Jakubikova J, Munshi NC, Haggarty SJ, Richardson PG, Hideshima T, Anderson KC (2014) Histone deacetylase 3 as a novel therapeutic target in multiple myeloma. Leukemia 28:680–689

    Article  CAS  PubMed  Google Scholar 

  25. Duarte D, Hawkins ED, Lo C, Celso (2018) The interplay of leukemia cells and the bone marrow microenvironment. Blood 131:1507–1511

    Article  CAS  PubMed  Google Scholar 

  26. Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, Kyurkchiev S (2014) Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J stem Cells 6:552–570

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kumar R, Godavarthy PS, Krause DS (2018) The bone marrow microenvironment in health and disease at a glance. J Cell Sci, 131

  28. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei D, Lu T, Ma D, Yu K, Zhang T, Xiong J, Wang W, Zhang Z, Fang Q, Wang J (2018) Synergistic activity of imatinib and AR-42 against chronic myeloid leukemia cells mainly through HDAC1 inhibition, life sciences. 211:224–237

  30. Beyer Nardi N, da Silva Meirelles L (2006) Mesenchymal stem cells: isolation, in vitro expansion and characterization, handbook of experimental pharmacology, 249–282

  31. Hou D, Wang B, You R, Wang X, Liu J, Zhan W, Chen P, Qin T, Zhang X, Huang H (2020) Stromal cells promote chemoresistance of acute myeloid leukemia cells via activation of the IL-6/STAT3/OXPHOS axis, annals of translational medicine. 8:1346

  32. Lu K, Fang XS, Feng LL, Jiang YJ, Zhou XX, Liu X, Li PP, Chen N, Ding M, Wang N, Zhang J, Wang X (2015) The STAT3 inhibitor WP1066 reverses the resistance of chronic lymphocytic leukemia cells to histone deacetylase inhibitors induced by interleukin-6. Cancer Lett 359:250–258

    Article  CAS  PubMed  Google Scholar 

  33. Teoh HK, Chong PP, Abdullah M, Sekawi Z, Tan GC, Leong CF, Cheong SK (2016) Small interfering RNA silencing of interleukin-6 in mesenchymal stromal cells inhibits multiple myeloma cell growth. Leuk Res 40:44–53

    Article  CAS  PubMed  Google Scholar 

  34. Chauhan D, Uchiyama H, Akbarali Y, Urashima M, Yamamoto K, Libermann T.A., Anderson K.C. (1996) Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood 87:1104–1112

    Article  CAS  PubMed  Google Scholar 

  35. Jones L, Carol H, Evans K, Richmond J, Houghton P.J., Smith M.A., Lock R.B. (2016) A review of new agents evaluated against pediatric acute lymphoblastic leukemia by the Pediatric Preclinical Testing Program. Leukemia 30:2133–2141

    Article  CAS  PubMed  Google Scholar 

  36. Bernt KM, Hunger SP (2014) Current concepts in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia. Front Oncol 4:54

    Article  PubMed  PubMed Central  Google Scholar 

  37. Aricò M, Valsecchi MG, Camitta B, Schrappe M, Chessells J, Baruchel A, Gaynon P, Silverman L, Janka-Schaub G, Kamps W, Pui CH, Masera G (2000) Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med 342:998–1006

    Article  PubMed  Google Scholar 

  38. Chen WC, Hu G, Hazlehurst LA (2020) Contribution of the bone marrow stromal cells in mediating drug resistance in hematopoietic tumors. Curr Opin Pharmacol 54:36–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. García-García A, de Castillejo CL (2015) Méndez-Ferrer, BMSCs and hematopoiesis. Immunol Lett 168:129–135

    Article  PubMed  Google Scholar 

  40. Li ZW, Dalton WS (2006) Tumor microenvironment and drug resistance in hematologic malignancies. Blood Rev 20:333–342

    Article  PubMed  Google Scholar 

  41. Lee SM, Bae JH, Kim MJ, Lee HS, Lee MK, Chung BS, Kim DW, Kang CD, Kim SH (2007) Bcr-abl-independent imatinib-resistant K562 cells show aberrant protein acetylation and increased sensitivity to histone deacetylase inhibitors. J Pharmacol Exp Ther 322:1084–1092

    Article  CAS  PubMed  Google Scholar 

  42. Liu Z, Liu H, Li Y, Shao Q, Chen J, Song J, Fu R (2020) Multiple myeloma-derived exosomes inhibit osteoblastic differentiation and improve IL-6 secretion of BMSCs from multiple myeloma. J Invest Medicine: Official Publication Am Federation Clin Res 68:45–51

    Article  Google Scholar 

  43. Clément-Demange L, Mulcrone PL, Tabarestani TQ, Sterling JA, Elefteriou F (2018) β2ARs stimulation in osteoblasts promotes breast cancer cell adhesion to bone marrow endothelial cells in an IL-1β and selectin-dependent manner. J bone Oncol 13:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mi F, Gong L (2017) Secretion of interleukin-6 by bone marrow mesenchymal stem cells promotes metastasis in hepatocellular carcinoma. Biosci Rep, 37

  45. Li L, Han R, Xiao H, Lin C, Wang Y, Liu H, Li K, Chen H, Sun F, Yang Z, Jiang J, He Y (2014) Metformin sensitizes EGFR-TKI-resistant human lung cancer cells in vitro and in vivo through inhibition of IL-6 signaling and EMT reversal. Clin cancer Research: Official J Am Association Cancer Res 20:2714–2726

    Article  CAS  Google Scholar 

  46. Li J, Zhang ZC, Yuan XS, Tang SS, Wang T, Liu HF, Cao Y (2022) TOPK Affects Autophagy of Skin Squamous Cell Carcinoma by Regulating NF-KB Pathway through HDAC1, Disease markers, 3771711

  47. Liang H, Yang X, Liu C, Sun Z, Wang X (2018) Effect of NF-kB signaling pathway on the expression of MIF, TNF-α, IL-6 in the regulation of intervertebral disc degeneration. J Musculoskel Neuronal Interact 18:551–556

    CAS  Google Scholar 

  48. Kawashima T, Murata K, Akira S, Tonozuka Y, Minoshima Y, Feng S, Kumagai H, Tsuruga H, Ikeda Y, Asano S, Nosaka T, Kitamura T (1950) STAT5 induces macrophage differentiation of M1 leukemia cells through activation of IL-6 production mediated by NF-kappaB p65, Journal of immunology (Baltimore, Md.: 167 (2001) 3652–3660

Download references

Funding

The present study was supported by the Science and Technology Program of Guizhou Province Health Committee (No.gzwkj2024-365).

Author information

Authors and Affiliations

Authors

Contributions

Danna Wei, Xiaoling Liang: designed the study, completed the experiment. Meiling Huang, Caili Wang: made interpreted the data. Zhangmin Ye: prepared the manuscript for publication. Tianzhuo Zhang,Jingrong Zhang: analyzed the data and interpreted the data. All authors revised the manuscript and approved it for publication.

Corresponding authors

Correspondence to Tianzhuo Zhang or Jingrong Zhang.

Ethics declarations

Ethical approval

Ethical approval was obtained from the Ethics Committee of Guiyang Maternal and Child Health Care Hospital. Guiyang Children’s Hospital.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, D., Liang, X., Huang, M. et al. Targeting histone deacetylase 1 (HDAC1) in the bone marrow stromal cells revers imatinib resistance by modulating IL-6 in Ph + acute lymphoblastic leukemia. Ann Hematol 103, 3015–3027 (2024). https://doi.org/10.1007/s00277-024-05830-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-024-05830-9

Keywords