Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Some Recent Progress and Applications in Graph Minor Theory

  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

In the core of the seminal Graph Minor Theory of Robertson and Seymour lies a powerful theorem capturing the ``rough'' structure of graphs excluding a fixed minor. This result was used to prove Wagner's Conjecture that finite graphs are well-quasi-ordered under the graph minor relation. Recently, a number of beautiful results that use this structural result have appeared. Some of these along with some other recent advances on graph minors are surveyed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon, N., Seymour, P.D., Thomas, R.: A separator theorem for non-planar graphs, J. Amer. Math. Soc. 3, 801–809 (1990)

    Google Scholar 

  2. Appel, K., Haken, W.: Every planar map is four colorable, Part I. Discharging, Illinois J. Math. 21, 429–490 (1977)

  3. Appel, K., Haken, W., Koch, J.: Every planar map is four colorable, Part II. Reducibility, Illinois J. Math. 21, 491–567 (1977)

  4. Archdeacon, D.: A Kuratowski theorem for the projective plane, J. Graph Theory 5, 243–246 (1981)

    Google Scholar 

  5. Archdeacon, D., Huneke, P.: A Kuratowski theorem for nonorientable surfaces, J. Combin. Theory, Ser. B 46, 173–231 (1989)

    Google Scholar 

  6. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees, Discrete Appl. Math. 23, 11–24 (1989)

    Google Scholar 

  7. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs, J. Assoc. Comput. Mach. 41, 153–180 (1994)

    Google Scholar 

  8. Blum, A., Karger, D.: An O(n3/14)-coloring algorithm for 3-colorable graphs, Inform. Proc. Lett. 61, 49–53 (1997)

  9. Bodlaender, H.L.: A linear-time algorithm for finding tree-decomposition of small treewidth, SIAM J. Comput. 25, 1305–1317 (1996)

    Google Scholar 

  10. Böhme, T., Kawarabayashi, K., Maharry, J., Mohar, B.: Linear connectivity forces large complete bipartite minors, to appear.

  11. Böhme, T., Kawarabayashi, K., Maharry, J., Mohar, B.: K3,k-minors in large 7-connected graphs, submitted.

  12. Böhme, T., Kostochka, A.: Disjoint K r -minors in large graphs with given average degree, Europ. J. Combinatorics 26, 289–292 (2005)

    Google Scholar 

  13. Böhme, T., Maharry, J., Mohar, B.: Ka,k minors in graphs of bounded tree-width, J. Combin. Theory, Ser. B 86, 133–147 (2002)

  14. Böhme, T., Mohar, B., Reed, B.: Forced minors in tough graphs, submitted.

  15. Bollobás, B., Thomason, A.: Highly linked graphs, Combinatorica 16, 313–320 (1996)

    Google Scholar 

  16. Bollobás, B., Thomason, A.: Proof of a conjecture of Mader, Erdős and Hajnal on topological complete subgraphs, European J. Combin. 19, 883–887 (1998)

    Google Scholar 

  17. Brunet, R., Mohar, B., Richter, R.B.: Separating and nonseparating disjoint homotopic cycles in graph embeddings, J. Comb. Theory, Ser. B 66, 201–231 (1996)

    Google Scholar 

  18. Chartrand, G., Kronk, H.V.: The point-arboricity of planar graphs, J. London Math. Soc. 44, 612–616 (1969)

    Google Scholar 

  19. Chartrand, G., Geller, D.P., Hedetniemi, T.: Graphs with forbidden subgraphs, J. Combin. Theory 10, 12–41 (1971)

    Google Scholar 

  20. Chen, Z.-Z.: NC algorithms for partitioning sparse graphs into induced forests with an application, in: Proc. 6th Internat. Symp. on Algorithms and Computation, Lecture Notes in Computer Science Vol. 1004, Springer, Berlin, 1995, pp. 428–437.

  21. Chen, Z.-Z., He, X.: Parallel complexity of partitioning a planar graph into vertex-induced forests, Discrete Appl. Math. 69, 183–198 (1996)

    Google Scholar 

  22. Chen, Z.-Z.: Efficient algorithms for acyclic coloring graphs, Theor. Comp. Sci. 230, 79–95 (2000)

    Google Scholar 

  23. Chen, G., Gould, R., Kawarabayashi, K., Pfender, F., Wei, B.: Graph minors and linkage problem I, J. Graph Theory 49, 75–91 (2005)

    Google Scholar 

  24. Colin de Verdière, Y.: Sur un nouvel invariant des graphes et un critère de planarité, J. Comb. Theory, Ser. B 50, 11–21 (1990)

  25. Colin de Verdière, Y.: Multiplicities of eigenvalues and tree-width of graphs, J. Comb. Theory, Ser. B 74, 121–146 (1998)

  26. Colin de Verdière, Y.: On a new graph invariant and a criterion of planarity, in Graph Structure Theory, N. Robertson and P. Seymour, editors, Contemp. Math. 147, pp. 137–147, Amer. Math. Soc., Providence, RI, 1993.

  27. Conway, J., Gordon, C.: Knots and links in spatial graphs, J. Graph Theory 7, 445–453 (1983)

    Google Scholar 

  28. Demaine, E.D., Fomin, F., Hajiaghayi, M., Thilikos, D.: Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs, J. ACM 52, 1–29 (2005)

    Google Scholar 

  29. Demaine, E.D., Hajiaghayi, M.: Fast algorithms for hard graph problems: Bidimensionality, minors and local tree-width, Proc. 12th Internat. Symp. on Graph Drawing, Lecture Notes in Computer Science 3383, Springer, 2004, pp. 517–533.

  30. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.: Algorithmic graph minor theory: Decomposition, approximation and coloring, Proc. 46th Ann. IEEE Symp. Found. Comp. Sci., Pittsburgh, PA, 2005, pp. 637–646.

  31. Demaine, E.D., Hajiaghayi, M., Mohar, B.: Approximation algorithms via contraction decomposition, preprint, 2006.

  32. DeVos, M., Ding, G., Oporowski, B., Sanders, D., Reed, B., Seymour, P., Vertigan, D.: Excluding any graph as a minor allows a low tree-width 2-coloring. J. Combin. Theory Ser. B 91, 25–41 (2004)

    Google Scholar 

  33. DeVos, M., Goddyn, L., Mohar, B., Vertigan, D., Zhu, X.: Coloring-flow duality of embedded graphs, Trans. Amer. Math. Soc. 357, 3993–4016 (2005)

    Google Scholar 

  34. DeVos, M., Hedge, R., Kawarabayashi, K., Norine, S., Thomas, R., Wollan, P.: Large 6-connected graphs without K6-minors, preprint.

  35. DeVos, M., Kawarabayashi, K.-I., Mohar, B.: 5-choosability of locally planar graphs, preprint, 2006.

  36. Diestel, R.: Graph Decompositions – A Study in Infinite Graph Theory, Oxford University Press, Oxford, 1990.

  37. Diestel, R.: Graph Theory, 3rd Edition, Springer, 2005.

  38. Diestel, R.: The depth-first search tree structure of T-free graphs, J. Combin. Theory Ser. B 61, 260–262 (1994)

    Google Scholar 

  39. Diestel, R., Rempel, C.: Dense minors in graphs of large girth, Combinatorica 25, 111–116 (2005)

    Google Scholar 

  40. Diestel, R., Yu. Gorbunov, K., Jensen, T.R., Thomassen, C.: Highly connected sets and the excluded grid theorem, J. Combin. Theory Ser. B 75, 61–73 (1999)

  41. Diestel, R., Thomas, R.: Excluding a countable clique, J. Combin. Theory Ser. B 76, 41–67 (1999)

    Google Scholar 

  42. Ding, G.:private communication.

  43. Ding, G., Oporowski, B., Sanders, D.P., Vertigan, D.: Surface, tree-width, clique-minors, and partitions, J. Combin. Theory Ser. B 79, 221–246 (2000)

    Google Scholar 

  44. Dirac, G.A.: A property of 4-chromatic graphs and some remarks on critical graphs, J. London Math. Soc. 27, 85–92 (1952)

    Google Scholar 

  45. Dirac, G.A.: Trennende Knotenpunktmengen und Reduzibilität abstrakter Graphen mit Anwendung auf das Vierfarbenproblem, J. reine angew. Math. 204, 116–131 (1960)

    Google Scholar 

  46. Dirac, G.A.: On the structure of 5- and 6-chromatic abstract graphs, J. reine angew. Math. 214/215, 43–52 (1964)

    Google Scholar 

  47. Ellingham, M.N., Zha, X.: Separating cycles in doubly toroidal embeddings, Graphs Combin. 19, 161–175 (2003)

    Google Scholar 

  48. Eppstein, D.: Diameter and treewidth in minor-closed graph families, Algorithmica 27, 275–291 (2000)

    Google Scholar 

  49. Erdős, P., Pósa, L.: On independet circuits contained in a graph, Canad. J. Math. 17, 347–352 (1965)

    Google Scholar 

  50. Erdős, P., Szekeres, G.: A combinatorial problem in geometry, Compositio Math. 2 , 463–470 (1935)

    Google Scholar 

  51. Erdős, P., Rubin, A., Taylor, H.: Choosability in graphs, in Proc. West-Coast Conference on Combinatorics, Graph Theory and Computing, Congr. Numer. XXVI, 125–157 (1979)

  52. Feige, U., Kilian, J.: Zero-knowledge and the chromatic number, J. Comput. System Sci. 57, 187–199 (1998)

    Google Scholar 

  53. Foisy, J.: A newly recognized intrinsically knotted graph, J. Graph Theory 43, 199–209 (2003)

    Google Scholar 

  54. Fortune, S., Hopcroft, J.E., Wylie, J.: The directed subgraph homeomorphism problem, Theor. Comput. Sci. 10, 111–121 (1980)

    Google Scholar 

  55. Geelen, J.F., Gerards, A.M.H., Whittle, G.: Branch-width and well-quasi-ordering in matroids and graphs, J. Combin. Theory Ser. B 84, 270–290 (2002)

    Google Scholar 

  56. Geelen, J.F., Whittle, G.: Branch-width and Rota's conjecture, J. Combin. Theory Ser. B 86, 315–330 (2002)

    Google Scholar 

  57. Geelen, J.F., Gerards, A.M.H., Whittle, G.: Disjoint cocircuits in matroids with large rank, J. Combin. Theory Ser. B 87, 270–279 (2003)

    Google Scholar 

  58. Geelen, J.F., Whittle, G.: Cliques in dense GF(q)-representable matroids, J. Combin. Theory Ser. B 87, 264–269 (2003)

    Google Scholar 

  59. Geelen, J.F., Gerards, A.M.H., Robertson, N., Whittle, G.: On the excluded minors for the matroids of branch-width k, J. Combin. Theory Ser. B 88, 261–265 (2003)

    Google Scholar 

  60. Geelen, J.F., Gerards, A.M.H., Robertson, N., Whittle, G.: Obstructions to branch-decomposition of matroids, to appear in J. Combin. Theory Ser. B.

  61. Geelen, J.F., Gerards, A.M.H., Whittle, G.: Excluding a planar graph from GF(q)-representable matroids, preprint.

  62. Geelen, J.F., Gerards, A.M.H., Whittle, G.: On Rota's Conjecture and excluded minors containing large projective geometries, to appear in J. Combin. Theory Ser. B.

  63. Geelen, J.F., Gerards, A.M.H., Whittle, G.: Tangles, tree-decompositions, and grids in matroids, preprint.

  64. Geelen, J.F., Gerards, A.M.H., Whittle, G.: Towards a structure theory for matrices and matroids, to appear in Proceedings of the International Congress of Mathematicians, Madrid, Spain, 2006. European Mathematical Society, 2006.

  65. Geelen, J.F., Gerards, A.M.H., Whittle, G.: Towards a matroid-minor structure theory, to appear in Combinatorics, Complexity and Chance. A tribute to Dominic Welsh, G. Grimmett and C. McDiarmid, Eds., Oxford University Press, 2006.

  66. Glover, H., Huneke, J.P., Wang, C.S.: 103 graphs that are irreducible for the projective plane, J. Combin. Theory Ser. B 27, 332–370 (1979)

    Google Scholar 

  67. Goddard, W.: Acyclic coloring of planar graphs, Discrete Math. 91, 91–94 (1991)

    Google Scholar 

  68. Gutner, S.: The complexity of planar graph choosability, Discrete Math. 159, 119–130 (1996)

    Google Scholar 

  69. Hadwiger, H.: Über eine Klassifikation der Streckenkomplexe, Vierteljahrsschr. naturforsch. Ges. ZÜrich 88, 133–142 (1943)

  70. Halin, R.: S-function for graphs, J. Geometry 8, 171–186 (1976)

    Google Scholar 

  71. Håstad, J.: Clique is hard to approximate within n1-ε, Acta Math. 182, 105–142 (1999)

    Google Scholar 

  72. Henzinger, M.R., Rao, S., Gabow, H.N.: Computing vertex connectivity: New bounds from old techniques, J. Algorithms 34, 222–250 (2000)

    Google Scholar 

  73. Jensen, T.R., Toft, B.: Graph Coloring Problems, Wiley-Interscience, 1995.

  74. Johnson, T., Thomas, R.: Generating internally four-connected graphs, J. Combin. Theory Ser. B 85, 21–58 (2002)

    Google Scholar 

  75. Johnson, T., Robertson, N., Seymour, P., Thomas, R.: Diretcted tree-width, J. Combin. Theory Ser. B 82 , 138–154 (2001)

    Google Scholar 

  76. Jørgensen, L.K.: Contractions to K8, J. Graph Theory 18, 431–448 (1994)

  77. Jung, H.A.: Eine Verallgemeinerung des n-fachen Zusammenhangs für Graphen, Math. Ann. 187, 95–103 (1970)

    Google Scholar 

  78. Juvan, M., Marinček, J., Mohar, B.: Elimination of local bridges, Math. Slovaca 47, 85–92 (1997)

    Google Scholar 

  79. Karp, R.M.: On the computational complexity of combinatorial problems, Networks 5, 45–48 (1975)

    Google Scholar 

  80. Kawarabayashi, K.: k-linked graphs with large girth, J. Graph Theory 45, 48–50 (2004)

    Google Scholar 

  81. Kawarabayashi, K.: Excluding a graph with K6--minor, submitted.

  82. Kawarabayashi, K.: On the connectivity of minimal counterexamples to Hadwiger's conjecture, to appear in J. Combin. Theory Ser. B.

  83. Kawarabayashi, K.: Unavoidable minors in large 5-connected graphs, in preparation.

  84. Kawarabayashi, K.: Minors in 7-chromatic graphs, submitted.

  85. Kawarabayashi, K., Kostochka, A., Yu, G.: On sufficient degree conditions for a graph to be k-linked, Combin. Probab. Comput. 15, 685–694 (2006)

    Google Scholar 

  86. Kawarabayashi, K., Luo, R., Niu, J., Zhang, C.Q.: On structure of k-connected graphs without K k -minors, Europ. J. Combinatorics 26, 293–308 (2005)

  87. Kawarabayashi, K., Mohar, B.: K4,k-minors in large 9-connected graphs, in preparation.

  88. Kawarabayashi, K., Mohar, B.: Approximating chromatic number and list-chromatic number of minor-closed and odd minor-closed classes of graphs, 38th ACM Symposium on Theory of Computing (STOC'06).

  89. Kawarabayashi, K., Mohar, B.: Algorithmic aspects of Hadwiger's Conjecture, submitted, 2005.

  90. Kawarabayashi, K., Mohar, B.: A relaxed Hadwiger's Conjecture for list colorings, to appear in J. Combin. Theory Ser. B.

  91. Kawarabayashi, K., Mohar, B.: Improved connectivity bound on K k -minors in large graphs, preprint.

  92. Kawarabayashi, K., Mohar, B.: The Erdős-Pósa property for K5-minors and half-integral packing, in preparation.

  93. Kawarabayashi, K., Toft, B.: Any 7-chromatic graph has K7 or K4,4 as a minor, Combinatorica 25, 327–353 (2005)

    Google Scholar 

  94. Klein, P.N.: A linear-time approximation scheme for TSP for planar weighted graphs, in Proceedings of the 46th IEEE Symposium on Foundations of Computer Science, pp. 146–155, 2005.

  95. Komlós, J., Szemerédi, E.: Topological cliques in graphs. II, Combin. Probab. Comput. 5, 79–90 (1996)

    Google Scholar 

  96. Kostochka, A.: Lower bound of the Hadwiger number of graphs by their average degree, Combinatorica 4, 307–316 (1984)

    Google Scholar 

  97. Kostochka, A.: The minimum Hadwiger number for graphs with a given mean degree of vertices (in Russian), Metody Diskret. Analiz. 38 , 37–58 (1982)

  98. Kostochka, A., Prince, N.: On Ks,t-minors in graphs with given average degree, preprint.

  99. Kühn, D., Osthus, D.: Forcing unbalanced complete bipartite minors, Europ. J. Combinatorics. 26, 75–81 (2005)

    Google Scholar 

  100. Kühn, D., Osthus, D.: Minors in graphs of large girth, Random Structures Algorithms 22, 213–225 (2003)

    Google Scholar 

  101. Kühn, D., Osthus, D.: Topological minors in graphs of large girth, J. Combin. Theory Ser. B 86, 364–380 (2002)

    Google Scholar 

  102. Kühn, D., Osthus, D.: Complete minors in Ks,s-free graphs, Combinatorica 25, 49–64 (2005)

  103. Larman, D.G., Mani, P.: On the existence of certain configurations within graphs and the 1-skeletons of polytopes, Proc. London Math. Soc. 20, 144–160 (1974)

    Google Scholar 

  104. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem, SIAM J. Comput. 9, 615–627 (1980)

    Google Scholar 

  105. Lovász, L., Schrijver, A.: On the null space of a Colin de Verdière matrix, Ann. Inst. Fourier (Grenoble) 49, 1017–1026 (1999)

    Google Scholar 

  106. Lovász, L., Schrijver, A.: A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs, Proc. Amer. Math. Soc. 126, 1275–1285 (1998)

    Google Scholar 

  107. Mader, W.: Homomorphiesätze für Graphen, Math. Ann. 178, 154–168 (1968)

    Google Scholar 

  108. Mader, W.: Existenz n-fach zusammenhängender Teilgraphen in Graphen genügend grosser Kantendichte, Abh. Math. Sem. Univ. Hamburg 37, 86–97 (1972)

    Google Scholar 

  109. Mader, W.: Topological subgraphs in graphs of large girth, Combinatorica 18, 405–412 (1998)

    Google Scholar 

  110. Mader, W.: private communication.

  111. Mahadev, N.V.R., Roberts, F.S., Santhanakrinshnan, P.: 3-choosable complete bipratite graphs, preprint.

  112. Maharry, J.: A characterization of graphs with no cube minor, J. Combin. Theory Ser. B 80, 179–201 (2000)

    Google Scholar 

  113. Maharry, J.: An excluded minor theorem for the octahedron, J. Graph Theory 31, 95–100 (1999)

    Google Scholar 

  114. Maharry, J.: An excluded minor theorem for the octahedron plus an edge, preprint.

  115. Maharry, J.: Three excluded minor structure theorems, preprint, 2006.

  116. Mohar, B.: Combinatorial local planarity and the width of graph embeddings, Canad. J. Math. 44, 1272–1288 (1992)

    Google Scholar 

  117. Mohar, B.: Uniqueness and minimality of large face-width embeddings of graphs, Combinatorica 15, 541–556 (1995)

    Google Scholar 

  118. Mohar, B.: A linear time algorithm for embedding graphs in an arbitrary surface, Siam. J. Discrete math. 12, 6–26 (1999)

    Google Scholar 

  119. Mohar, B.: Graph minors and graphs on surfaces. in ``Surveys in Combinatorics, 2001 (Sussex)'', London Math. Soc. Lecture Note Ser. 288, Cambridge Univ. Press, Cambridge, 2001, pp. 145–163.

  120. Mohar, B.: Problem of the month, Fall 2003, http://www.fmf.uni-lj.si/~mohar/.

  121. Mohar, B., Seymour, P.D.: Coloring locally bipartite graphs on surfaces, J. Combin. Theory, Ser. B 84, 301–310 (2002)

    Google Scholar 

  122. Mohar, B., Thomassen, C.: Graphs on Surfaces, Johns Hopkins University Press, Baltimore, MD, 2001.

  123. Myers, J.: The extremal function for unbalanced bipartite minors, Discrete Math. 271, 209–221 (2003)

    Google Scholar 

  124. Myers, J., Thomason, A.: The extremal function for noncomplete graph minors, to appear in Combinatorica.

  125. Oporowski, B., Oxley, J., Thomas, R.: Typical subgraphs of 3- and 4-connected graphs, J. Combin. Theory Ser. B 57, 239–257 (1993)

    Google Scholar 

  126. Reed, B.: Tree width and tangles: a new connectivity measure and some applications, in ``Surveys in Combinatorics, 1997 (London)'', London Math. Soc. Lecture Note Ser. 241, Cambridge Univ. Press, Cambridge, 1997, pp. 87–162.

  127. Reed, B.: Mangoes and blueberries, Combinatorica 19, 267–296 (1999)

  128. Reed, B., Seymour, P.D.: Fractional colouring and Hadwiger's conjecture, J. Combin. Theory Ser. B 74, 147–152 (1998)

    Google Scholar 

  129. Robertson, N.: private communication.

  130. Robertson, N., Sanders, D.P., Seymour, P.D., Thomas, R.: The four-color theorem, J. Combin. Theory Ser. B 70, 2–44 (1997)

    Google Scholar 

  131. 3 Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest, J. Combin. Theory Ser. B 36, 39–61 (1983)

    Google Scholar 

  132. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width, J. Algorithm 7, 309–322 (1986)

    Google Scholar 

  133. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width, J. Combin. Theory Ser. B 36, 49–63 (1984)

    Google Scholar 

  134. Robertson, N., Seymour, P.D.: Graph minors. IV. Tree-width and well-quasi-ordering, J. Combin. Theory Ser. B 48, 227–254 (1990)

    Google Scholar 

  135. Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph, J. Combin. Theory Ser. B 41, 92–114 (1986)

    Google Scholar 

  136. Robertson, N., Seymour, P.D.: Graph minors. VI. Disjoint paths across a disc, J. Combin. Theory Ser. B 41, 115–138 (1986)

    Google Scholar 

  137. Robertson, N., Seymour, P.D.: Graph minors. VII. Disjoint paths on a surface, J. Combin. Theory Ser. B 45, 212–254 (1988)

    Google Scholar 

  138. Robertson, N., Seymour, P.D.: Graph minors. VIII. A kuratowski theorem for general surfaces, J. Combin. Theory Ser. B 45, 212–254 (1988)

    Google Scholar 

  139. Robertson, N., Seymour, P.D.: Graph minors. IX. Disjoint crossed paths, J. Combin. Theory Ser. B 49, 40–77 (1990)

    Google Scholar 

  140. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition, J. Combin. Theory Ser. B 52, 153–190 (1991)

    Google Scholar 

  141. Robertson, N., Seymour, P.D.: Graph minors. XI. Circuits on a surface, J. Combin. Theory Ser. B 60, 72–106 (1994)

    Google Scholar 

  142. Robertson, N., Seymour, P.D.: Graph minors. XII. Distance on a surface, J. Combin. Theory Ser. B 64, 240–272 (1995)

    Google Scholar 

  143. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem, J. Combin. Theory Ser. B 63, 65–110 (1995)

    Google Scholar 

  144. Robertson, N., Seymour, P.D.: Graph minors. XIV. Extending an embedding, J. Combin. Theory Ser. B 65, 23–50 (1995)

    Google Scholar 

  145. Robertson, N., Seymour, P.D.: Graph minors. XV. Giant Steps, J. Combin. Theory Ser. B 68, 112–148 (1996)

  146. Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a non-planar graph, J. Combin. Theory Ser. B 89, 43–76 (2003)

    Google Scholar 

  147. Robertson, N., Seymour, P.D.: Graph minors. XVII. Taming a vortex, J. Combin. Theory Ser. B 77, 162–210 (1999)

    Google Scholar 

  148. Robertson, N., Seymour, P.D.: Graph minors. XVIII. Tree-decompositions and well-quasi-ordering, J. Combin. Theory Ser. B 89, 77–108 (2003)

    Google Scholar 

  149. 3 Robertson, N., Seymour, P.D.: Graph minors. XIX, Well-quasi-ordering on a surface, J. Combin. Theory Ser. B 90, 325–385 (2004)

    Google Scholar 

  150. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner's conjecture, J. Combin. Theory Ser. B 92, 325–357 (2004)

    Google Scholar 

  151. Robertson, N., Seymour, P.D.: Graph minors. XXI. Graphs with unique linkages, preprint.

  152. Robertson, N., Seymour, P.D.: Graph minors. XXII. Irrelevant vertices in linkage problems, preprint.

  153. Robertson, N., Seymour, P.D.: Graph minors. XXIII. Nash-Williams' immersion conjecture, preprint.

  154. Robertson, N., Seymour, P.D.: An outline of a disjoint paths algorithm, in: ``Paths, Flows, and VLSI-Layout,'' B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver (Eds.), Springer-Verlag, Berlin, 1990, pp. 267–292.

  155. Robertson, N., Seymour, P.D.: Excluding a graph with one crossing, Contemp. Math. 147, 669–675 (1993)

    Google Scholar 

  156. Robertson, N., Seymour, P.: private communication, unpublished.

  157. Robertson, N., Seymour, P., Thomas, R.: Excluding infinite minors, Discrete Math. 95, 303–319 (1991)

    Google Scholar 

  158. Robertson, N., Seymour, P., Thomas, R.: Excluding subdivision of infinite cliques, Trans. Amer. Math. Soc. 332, 211–233 (1992)

    Google Scholar 

  159. Robertson, N., Seymour, P.D., Thomas, R.: Hadwiger's conjecture for K6-free graphs, Combinatorica 13, 279–361 (1993)

    Google Scholar 

  160. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph, J. Combin. Theory Ser. B 62, 323–348 (1994)

    Google Scholar 

  161. Robertson, N., Seymour, P., Thomas, R.: Excluding infinite clique minors, Memoirs Amer. Math. Soc. 118, AMS, 1995.

  162. Robertson, N., Seymour, P.D., Thomas, R.: Kuratowski chains, J. Combin. Theory Ser. B 64, 127–154 (1995)

    Google Scholar 

  163. Robertson, N., Seymour, P.D., Thomas, R.: Petersen family minors, J. Combin. Theory Ser. B64, 155–184 (1995)

    Google Scholar 

  164. Robertson, N., Seymour, P.D., Thomas, R.: Sachs' linkless embedding conjecture, J. Combin. Theory Ser. B 64, 185–227 (1995)

    Google Scholar 

  165. Robertson, N., Vitray, R.P.: Representativity of surface embeddings, in: ``Paths, Flows, and VLSI-Layout'' (B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver Eds.), Springer-Verlag, Berlin, 1990, pp. 293–328.

  166. Roychoudhury, A., Sur-Kolay, S.: Efficient algorithm for vertex arboricity of planar graphs, in Proc. 15th Internat. Conf. on Foundations of Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science 1026, Springer, 1995, pp. 37–51.

  167. Seese, D.G., Wessel, W.: Grids and their minors, J. Combin. Theory Ser. B 47, 349–360 (1989)

    Google Scholar 

  168. Seymour, P.D.: Disjoint paths in graphs, Discrete Math. 29, 293–309 (1980)

    Google Scholar 

  169. Seymour, P.D.: A bound on the excluded minors for a surface, preprint.

  170. Seymour, P.D., Thomas, R.: Uniqueness of highly representative surface embeddings, J. Graph Theory 23, 337–349 (1996)

    Google Scholar 

  171. Shiloach, Y.: A polynomial solution to the undirected two paths problems, J. Assoc. Comput. Mach. 27, 445–456 (1980)

    Google Scholar 

  172. Song, Z., Thomas, R.: The extremal function for K9-minors, J. Combin. Theory Ser. B 96, 240–252 (2006)

    Google Scholar 

  173. Sulanke, T.: Irreducible triangulations of low genus surfaces, preprint, 2006.

  174. Thomas, R.: A counterexample to ``Wagner's conjecture'' for infinite graphs, Math. Proc. Cambridge Philos. Soc. 103, 55–57 (1988)

    Google Scholar 

  175. Thomas, R.: Well-quasi-ordering infinite graphs with forbidden finite planar minor, Trans. Amer. Math. Soc. 312, 279–313 (1989)

    Google Scholar 

  176. Thomas, R.: Recent excluded minor theorems for graphs, in ``Surveys in Combinatorics, 1999 (Canterbury)'', Cambridge Univ. Press, Cambridge, 1999, pp. 201–222.

  177. Thomas, R., Wollan, P.: An improved linear edge bound for graph linkages, Europ. J. Combinatorics 26, 309–324 (2005)

    Google Scholar 

  178. Thomas, R., Wollan, P.: The extremal function for 3-linked graphs, preprint.

  179. Thomason, A.: An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95, 261–265 (1984)

    Google Scholar 

  180. Thomason, A.: The extremal function for complete minors, J. Combin. Theory Ser. B 81, 318–338 (2001)

    Google Scholar 

  181. Thomason, A.: Two minor problems, Combin. Probab. Comput. 13, 413–414 (2004)

    Google Scholar 

  182. Thomassen, C.: 2-linked graphs, Europ. J. Combinatorics 1, 371–380 (1980)

    Google Scholar 

  183. Thomassen, C.: Girth in graphs, J. Combin. Theory, Ser. B 35, 129–141 (1983)

    Google Scholar 

  184. Thomassen, C.: On the presence of disjoint subgraphs of a specified type, J. Graph Theory 12, 101–111 (1988)

    Google Scholar 

  185. Thomassen, C.: Embedding and minors, Handbook of Combinatorics, Vol. 1, Elsevier, Amsterdam, 1995, pp. 301–349.

  186. Thomassen, C.: A simpler proof of the excluded minor theorem for higher surfaces, J. Combin. Theory Ser. B 70, 306–311 (1997)

    Google Scholar 

  187. Thomassen, C.: Color-critical graphs on a fixed surface, J. Combin. Theory Ser. B 70, 67–100 (1997)

    Google Scholar 

  188. Thomassen, C.: Every planar graph is 5-choosable, J. Combin. Theory Ser. B 62, 180–181 (1994)

    Google Scholar 

  189. Toft, B.: A survey of Hadwiger's conjecture, Congr. Numer. 115, 249–283 (1996)

    Google Scholar 

  190. Tuza, Z.: Graph colorings with local constraints–-a survey, Discuss. Math. Graph Theory 17, 161–228 (1997)

    Google Scholar 

  191. Vizing, Z.: Coloring the vertices of a graph in prescribed colors. Metody Diskret. Anal. v Teorii Kodov i Schem 29, 3–10 (1976) (in Russian).

  192. Voigt, M.: List colourings of planar graphs, Discrete Math. 120, 215–219 (1993)

    Google Scholar 

  193. Wagner, K.: Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114, 570–590 (1937)

    Google Scholar 

  194. Wagner, K.: Beweis einer Abschwächung der Hadwiger-Vermutung, Math. Ann. 153, 139–141 (1964)

    Google Scholar 

  195. Woodall, D.R.: Improper colourings of graphs. in: Graph Colourings (ed. R. Nelson and R. J. Wilson), Pitman Research Notes 218, Longman, 1990, pp. 45–63.

  196. Zha, X., Zhao, Y.: On nonnull separating circuits in embedded graphs, in: Graph structure theory (Seattle, WA, 1991), Contemp. Math. 147, 349–362 (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Kawarabayashi.

Additional information

Research partly supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research, Grant number 16740044, by Sumitomo Foundation, by C & C Foundation and by Inoue Research Award for Young Scientists

Supported in part by the Research Grant P1–0297 and by the CRC program

On leave from: IMFM & FMF, Department of Mathematics, University of Ljubljana, Ljubljana, Slovenia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawarabayashi, Ki., Mohar, B. Some Recent Progress and Applications in Graph Minor Theory. Graphs and Combinatorics 23, 1–46 (2007). https://doi.org/10.1007/s00373-006-0684-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-006-0684-x

Keywords