Abstract
This study examines the effectiveness of adaptive observation experiments using the ensemble transformation sensitivity (ETS) method to improve precipitation forecasts during heavy rainfall events in South China and the Sichuan Basin. High-resolution numerical models are employed to simulate adaptive observations. By identifying the sensitive areas of key weather system positions 42 hours before heavy rainfall events, the adaptive observations improve the prediction of jet streams, strong winds, and shear lines, which are essential for accurate heavy rainfall forecasting. This improvement is reflected in both the precipitation structure and location accuracy within the verification region. In South China, targeted observations enhance rainfall predictions by improving water vapor transport. In the Sichuan Basin, adaptive observations refine water vapor transport and adjust vortex dynamics. This research highlights the importance of accurately predicting shear lines and jet streams for forecasting heavy rainfall in these areas. Overall, this study found that adaptive observation enhances the precipitation forecast skills of the structure and location for heavy rainfall in South China and the Sichuan Basin, emphasizing their potential utility in operational numerical weather prediction.
摘 要
本研究采用高分辨率数值模式模拟适应性观测试验,探讨了利用集合变换敏感性(ETS)方法进行适应性观测试验的有效性,以改进华南和四川盆地暴雨期间的降水预报。通过识别强降水事件发生前 42 小时关键天气系统位置的敏感区域,适应性观测有助于改善对急流、强风和切变线的预测,而这些对准确预报暴雨至关重要。这种改进体现在验证区域内的降水结构和位置精度上。在华南地区,目标观测通过改善水汽输送提高了降水预报。在四川盆地,适应性观测改进了水汽输送和低涡动力调整。这项研究强调了准确预测切变线和急流对预报这些地区强降水的重要性。总之,本研究发现,适应性观测提高了华南和四川盆地强降水结构和位置的降水预报能力,强调了其在业务数值天气预报中的潜在作用。
Similar content being viewed by others
Data Availability Statement. The European Center for Medium-Range Weather Forecasts 5th Reanalysis Dataset are available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview. The Global Precipitation Measurement data are available at https://gpm.nasa.gov/data/directory. The THORPEX Interactive Grand Global Ensemble portal data are available at https://apps.ecmwf.int/datasets/data/tigge. The data products from the Global Forecast System model are available at https://rda.ucar.edu/datasets/ds084.1/dataaccess.
References
Agustí-Panareda, A., A. Beljaars, C. Cardinali, I. Genkova, and C. Thorncroft, 2010: Impacts of assimilating AMMA soundings on ECMWF analyses and forecasts. Wea. Forecasting, 25(4), 1142–1160, https://doi.org/10.1175/2010WAF2222370.1.
Anderson, J. L., 1997: The impact of dynamical constraints on the selection of initial conditions for ensemble predictions: Low-order perfect model results. Mon. Wea. Rev., 125(11), 2969–2983, https://doi.org/10.1175/1520-0493(1997)125<2969:TIODCO>2.0.CO;2.
Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525(7567), 47–55, https://doi.org/10.1038/nature14956.
Bergot, T., 1999: Adaptive observations during FASTEX: A systematic survey of upstream flights. Quart. J. Roy. Meteor. Soc., 125(561), 3271–3298, https://doi.org/10.1002/qj.49712556108.
Bishop, C. H., and Z. Toth, 1999: Ensemble transformation and adaptive observations. J. Atmos. Sci., 56(11), 1748–1765, https://doi.org/10.1175/1520-0469(1999)056<1748:ETAAO>2.0.CO;2.
Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129(3), 420–436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.
Bougeault, P., and Coauthors, 2010: The THORPEX interactive grand global ensemble. Bull. Amer. Meteor. Soc., 91(8), 1059–1072, https://doi.org/10.1175/2010BAMS2853.1.
Burpee, R. W., S. D. Aberson, J. L. Franklin, S. J. Lord, and R. E. Tuleya, 1996: The impact of omega dropwindsondes on operational hurricane track forecast models. Bull. Amer. Meteor. Soc., 77(5), 925–933, https://doi.org/10.1175/1520-0477(1996)077<0925:TIOODO>2.0.CO;2.
Chen, S. Q., Y. Zhang, J. J. Xu, W. Q. Shen, G. L. Ye, and Z. B. Lu, 2022: Data assimilation of adaptive observation and app lication for typhoon forecasts over the Western North Pacific. Atmospheric Research, 276, 106274, https://doi.org/10.1016/j.atmosres.2022.106274.
Comellas, A., L. Molini, A. Parodi, A. Sairouni, M. C. Llasat, and F. Siccardi, 2011: Predictive ability of severe rainfall events over Catalonia for the year 2008. Natural Hazards and Earth System Sciences, 11(7), 1813–1827, https://doi.org/10.5194/nhess-11-1813-2011.
Dimet, F. X. L., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus A, 38A(2), 97–110, https://doi.org/10.1111/j.1600-0870.1986.tb00459.x.
Doyle, J. D., C. Amerault, C. A. Reynolds, and P. A. Reinecke, 2014: Initial condition sensitivity and predictability of a severe extratropical cyclone using a moist adjoint. Mon. Wea. Rev., 142(1), 320–342, https://doi.org/10.1175/MWR-D-13-00201.1.
Ebert, E. E., U. Damrath, W. Wergen, and M. E. Baldwin, 2003: Supplement to the WGNE assessment of short-term quantitative precipitation forecasts. Bull. Amer. Meteor. Soc., 84(4), 492–492, https://doi.org/10.1175/BAMS-84-4-Ebert.
Faccani, C., and Coauthors, 2009: The impacts of AMMA Radiosonde data on the French global assimilation and forecast system. Wea. Forecasting, 24(5), 1268–1286, https://doi.org/10.1175/2009WAF2222237.1.
Falck, A. S., J. Tomasella, F. L. R. Diniz, and V. Maggioni, 2021: Applying a precipitation error model to numerical weather predictions for probabilistic flood forecasts. J. Hydrol., 598, 126374, https://doi.org/10.1016/j.jhydrol.2021.126374.
Gelaro, R., C. A. Reynolds, and R. M. Errico, 2002: Transient and asymptotic perturbation growth in a simple model. Quart. J. Roy. Meteor. Soc., 128(579), 205–227, https://doi.org/10.1256/00359000260498860.
Golding, B. W., 2000: Quantitative precipitation forecasting in the UK. J. Hydrol., 239(1–4), 286–305, https://doi.org/10.1016/S0022-1694(00)00354-1.
Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42, 129–151.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134(9), 2318–2341, https://doi.org/10.1175/MWR3199.1.
Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126(3), 796–811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.
Huang, L., and Y. L. Luo, 2017: Evaluation of quantitative precipitation forecasts by TIGGE ensembles for south China during the presummer rainy season. J. Geophys. Res.: Atmos., 122(16), 8494–8516, https://doi.org/10.1002/2017JD026512.
Huang, Y. J., and X. P. Cui, 2015: Dominant cloud microphysical processes of a torrential rainfall event in Sichuan, China. Adv. Atmos. Sci., 32(3), 389–400, https://doi.org/10.1007/s00376-014-4066-7.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res.: Atmos., 113(D13), D13103, https://doi.org/10.1029/2008JD009944.
Joly, A., and Coauthors, 1999: Overview of the field phase of the fronts and Atlantic Storm-Track EXperiment (FASTEX) project. Quart. J. Roy. Meteor. Soc., 125(561), 3131–3163, https://doi.org/10.1002/qj.49712556103.
Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol., 43(1), 170–181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKC-PAU>2.0.CO;2.
Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press.
Lewis, J. M., and J. C. Derber, 1985: The use of adjoint equations to solve a variational adjustment problem with advective constraints. Tellus A, 37A(4), 309–322, https://doi.org/10.1111/j.1600-0870.1985.tb00430.x.
Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20(2), 130–141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
Majumdar, S. J., 2016: A review of targeted observations. Bull. Amer. Meteor. Soc., 97(12), 2287–2303, https://doi.org/10.1175/BAMS-D-14-00259.1.
Majumdar, S. J., C. H. Bishop, B. J. Etherton, and Z. Toth, 2002: Adaptive sampling with the ensemble transform Kalman filter. Part II: Field program implementation. Mon. Wea. Rev., 130(5), 1356–1369, https://doi.org/10.1175/1520-0493(2002)130<1356:ASWTET>2.0.CO;2.
Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes in Geophysics, 10(6), 493–501, https://doi.org/10.5194/npg-10-493-2003.
Palmer, T. N., R. Gelaro, J. Barkmeijer, and R. Buizza, 1998: Singular vectors, metrics, and adaptive observations. J. Atmos. Sci., 55(4), 633–653, https://doi.org/10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2.
Qian, T. T., P. Zhao, F. Q. Zhang, and X. H. Bao, 2015: Rainy-season precipitation over the Sichuan basin and adjacent regions in southwestern China. Mon. Wea. Rev., 143(1), 383–394, https://doi.org/10.1175/MWR-D-13-00158.1.
Sasaki, Y., 1958: An objective analysis based on the variational method. J. Meteor. Soc. Japan, 36(3), 77–88, https://doi.org/10.2151/jmsj1923.36.3_77.
Snyder, C., 1996: Summary of an informal workshop on adaptive observations and FASTEX. Bull. Amer. Meteor. Soc., 77(5), 953–961, https://doi.org/10.1175/1520-0477-77.5.953.
Solow, A. R., 1994: Atmospheric data analysis. Journal of the American Statistical Association, 89(428), 1564–1564, https://doi.org/10.2307/2291025.
Sun, J. H., Y. C. Zhang, R. X. Liu, S. M. Fu, and F. Y. Tian, 2019: A review of research on warm-sector heavy rainfall in China. Adv. Atmos. Sci., 36(12), 1299–1307, https://doi.org/10.1007/s00376-019-9021-1.
Sun, J. Z., and Coauthors, 2014: Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bull. Amer. Meteor. Soc., 95(3), 409–426, https://doi.org/10.1175/BAMS-D-11-00263.1.
Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. Vol. 1115, Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, 12–16 January 2004, Seattle, WA, USA.
Thakur, N., S. Karmakar, and S. Soni, 2021: Rainfall forecasting using various artificial neural network techniques - A review. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 7, 506–526, https://doi.org/10.32628/CSEIT2173159.
Torn, R. D., and G. J. Hakim, 2008: Ensemble-based sensitivity analysis. Mon. Wea. Rev., 136(2), 663–677, https://doi.org/10.1175/2007MWR2132.1.
Wang, H. L., Y. F. Xie, C. Peter, S.-Y. Fan, and Y. Zhang, 2018: Ensemble transform sensitivity for adaptive observations: A general formulation and its practicable implementation. Atmospheric and Oceanic Science Letters, 11(4), 352–357, https://doi.org/10.1080/16742834.2018.1491778.
Wernli, H., C. Hofmann, and M. Zimmer, 2009: Spatial forecast verification methods intercomparison project: Application of the SAL technique. Wea. Forecasting, 24(6), 1472–1484, https://doi.org/10.1175/2009WAF2222271.1.
Wernli, H., M. Paulat, M. Hagen, and C. Frei, 2008: SAL—A novel quality measure for the verification of quantitative precipitation forecasts. Mon. Wea. Rev., 136(11), 4470–4487, https://doi.org/10.1175/2008MWR2415.1.
Wei W, and C. Ji-Long 2012: Sensitivity of tropical cyclone precipitation to atmospheric moisture content: Case study of Bilis (2006). Atmospheric and Oceanic Science Letters, 5(5), 420–425, https://doi.org/10.1080/16742834.2012.11447030.
Xia, R. D., Y. L. Luo, D.-L. Zhang, M. X. Li, X. H. Bao, and J. S. Sun, 2021: On the diurnal cycle of heavy rainfall over the Sichuan Basin during 10–18 August 2020. Adv. Atmos. Sci., 38(12), 2183–2200, https://doi.org/10.1007/s00376-021-1118-7.
Zhang, X. B., Y. L. Luo, Q. L. Wan, W. Y. Ding, and J. X. Sun, 2016a: Impact of assimilating wind profiling radar observations on convection-permitting quantitative precipitation forecasts during SCMREX. Wea. Forecasting, 31(4), 1271–1292, https://doi.org/10.1175/WAF-D-15-0156.1.
Zhang, Y., Y. F. Xie, H. L. Wang, D. H. Chen, and Z. Toth, 2016b: Ensemble transform sensitivity method for adaptive observations. Adv. Atmos. Sci., 33(1), 10–20, https://doi.org/10.1007/s00376-015-5031-9.
Zhang, Y. H., M. Xue, K. F. Zhu, and B. W. Zhou, 2019: What is the main cause of diurnal variation and nocturnal peak of summer precipitation in Sichuan Basin, China? The key role of boundary layer low-level jet inertial oscillations. J. Geophys. Res.: Atmos., 124(5), 2643–2664, https://doi.org/10.1029/2018JD029834.
Zhou, F. F., and X. P. Cui, 2015: The adjoint sensitivity of heavy rainfall to initial conditions in debris flow areas in China. Atmospheric Science Letters, 16(4), 485–491, https://doi.org/10.1002/asl.586.
Zhou, T. J., R. C. Yu, H. M. Chen, A. G. Dai, and Y. Pan, 2008: Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J. Climate, 21(16), 3997–4010, https://doi.org/10.1175/2008JCLI2028.1.
Acknowledgements
This study was jointly supported by the Guangdong Province University Student Innovation and Entrepreneurship Project (580520049), the Guangdong Ocean University Scientific Research Startup Fund (R20021), and the Key Laboratory of Plateau and Basin Rainstorm and Drought Disasters in Sichuan Province Open Research Fund (SZKT201902).
Author information
Authors and Affiliations
Corresponding author
Additional information
Article Highlights
• The ensemble transform sensitivity method helps identify the sensitive areas to improve rainfall forecasts in South China and the Sichuan Basin.
• Adaptive observations refine predictions of shear lines and the jet stream, which are crucial for rainfall forecasting.
• Targeted observation data assimilation proves superior to random in heavy rainfall prediction.
Rights and permissions
About this article
Cite this article
He, L., Peng, W., Zhang, Y. et al. Comparison of Adaptive Simulation Observation Experiments of the Heavy Rainfall in South China and Sichuan Basin. Adv. Atmos. Sci. 41, 2173–2191 (2024). https://doi.org/10.1007/s00376-024-3114-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00376-024-3114-1